Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:Cellular and inflammatory events were evaluated in mouse muscle after snake venoms Daboia russelii and Bothrops asper injection over time. A murine model of muscle necrosis based on venom injection was used to investigate up to 800 genes involved in fibrosis diseases and tissue regeneration using the multiplex RNA panel Fibrosis V2 from NanoString technology.
Project description:The synthesis of snake venom proteins is subjected to finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined time frame in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In the case of snake venom glands, subcellular proteome analysis could help understand the molecular basis of venom variability. Consequently, knowing the functional implications of such phenotypic plasticity could prove relevant in envenoming treatment and biological research. In this regard, we performed subcellular fractionation of proteins from B. jararaca snake venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome. They pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between genders (adult male and female).
Project description:While cellular transcripts encode rich information that provide key features to understand the molecular basis of snake venom variation, their presence/ abundance does not necessary imply/correlate in the translation of a functional (protein) product. In this study we carried out an analysis of the venom gland proteome of Bothrops jararaca taking into account two distinct phases of its ontogenetic development (i.e. newborn and adult specimens) and the marked sexual dimorphism recently reported on its venom proteome. Proteomic data analysis showed wider dynamic range for toxins when comparing to non-toxins and a dynamic proteome rearrangement in cellular proteins upon B. jararaca development. Differentially expressed proteins covered a number of biological pathways related to protein synthesis, including proteins related to transcription and translation, which were found to be significantly higher expressed in the newborn venom gland. Our results showed that the variation in the expression levels of cellular proteins gives rise to an even higher variation in the dynamic range of the expressed toxins. Upon ageing, the molecular constraints related to protein synthesis together with ecological traits would likely have an impact on the toxin repertoire, which, in the case of B. jararaca species, would enable the species to deal with different prey types during its lifespan.
Project description:Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analysis revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analysis in studies involving intraspecific venom variability and venom evolution.