Project description:The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut-nerve-brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer's disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data.
Project description:The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut-nerve-brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer's disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data.
Project description:Ion channel splice array data from cerebellum brain tissue samples collected from Alzheimer's disease patients. Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.
Project description:Ion channel splice array data from temporal cortex brain tissue samples collected from Alzheimer's disease patients. Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.
Project description:Ion channel splice array data from cerebellum brain tissue samples collected from control (non Alzheimer's disease) subjects. Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.
Project description:Parkinson's disease (PD) progresses relentlessly and affects five million people worldwide. Laboratory tests for PD are critically needed for developing treatments designed to slow or prevent progression of the disease. We performed a transcriptome-wide scan in 105 individuals to interrogate the molecular processes perturbed in cellular blood of patients with early-stage PD. The molecular marker here identified is strongly associated with risk of PD in 66 samples of the training set (third tertile cross-validated odds ratio of 5.7 {P for trend 0.005}). It is further validated in 39 independent test samples (third tertile odds ratio of 5.1 {P for trend 0.04}). The genes differentially expressed in patients with PD, or Alzheimer's or progressive supranuclear palsy offer unique insights into disease-linked processes detectable in peripheral blood. Combining gene expression scans in blood and linked clinical data will facilitate the rapid characterization of candidate biomarkers as demonstrated here with respect to PD. Experiment Overall Design: Whole blood expression data from 50 patients with Parkinson's disease, 33 with neurodegenerative diseases other than PD, and 23 healthy controls.
Project description:Ion channel splice array data from temporal cortex brain tissue samples collected from control subjects (no Alzheimer's disease). Temporal cortex (Alzheimer's disease affected brain tissue structure) and cerebellum (Alzheimer's disease unaffected brain tissue structure) samples from control subjects were compared to temporal cortex and cerebellum of patients with Alzheimer's disease.
Project description:Aging is a major risk factor for neurodegenerative diseases that impose tremendous burdens on people and societies today. To understand trajectories of neurological aging in a primate, we generated one of the most comprehensive brain transcriptional datasets to date in a unique population of naturalistic, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression are associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we demonstrate that higher social status in females is associated with younger relative transcriptional ages, providing a compelling link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging and indicate promising directions for improving social gradients in neurological health.