Project description:Transcriptional profiling of methanotrophic bacteria (pmoA gene) in methane oxidation biocover soil by depth Three-different depth condition in methane oxidation biocover soil: top, middle and botton layer soil: genomic DNA extract. Three replicate per array.
Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Paddy rice with husk can be availbale for chicken dietary resource instead of yellow corn. Ingestion of paddy rice potentially affects on gastrointestinal physiology and function including digestion/absorption of nutrients and gut barrier function such as mucosal immunity, but the details of changes is unknown. To obtain insight into the physiological modifications in the small intestine of chickens fed paddy rice, we conducted a comprehensive analysis of gene expression in small intestine by DNA microarray. In the paddy rice group, a total of 120 genes were elevated >1.5-fold in the paddy rice group, whereas a total of 159 genes were diminished < 1.5-fold. Remarkably, the gene expression levels of IGHA (immunoglobulin heavy chain α), IGJ (immunoglobulin J chain), and IGLL1 (immunoglobulin light chain λ chain region), which constitute immunoglobulin A, decreased 3 to 10 times in the paddy rice group.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw.