Project description:"Bacillus subtilis is an aerobic, endospore forming, rod-shaped Gram-positive bacterium. It has a relatively small genome of 4,215,606 bp with 4,197 protein coding genes. It is considered a model organism to study natural phenomena, such as chromosome replication, sporulation or swarming motility. Furthermore, many bacterial pathogens are closely related to B. subtilis, making it a highly significant system for research on potential targets for drug therapeutics. Although B. subtilis is among the best characterised bacterial systems, many of its gene products are still non-annotated, completely uncharacterised and/or their post-translational landscape is unknown. In the current study we aim at broadening the available information on Bacillus subtilis by providing a comprehensive resource for the microbial community encompassing a wide array of information at the genome, proteome, phosphoproteome and acetylome level."
Project description:Tenacibaculum finnmarkense is a novel Gram-negative, aerobic bacterial strain causing skin ulcers in Atlantic salmon. This is an emerging pathogen, which may cause serious problems to aquaculture. The study was designed to compare the life stages (smolt and posmolt) and to assess effects of environment (fresh and brackis water) on the course of disease and salmon responses to the pathogen.
Project description:Strain SM1988T is a Gram-negative, aerobic, oxidase- and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production (236 U/mL) of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genomic and secretomic analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.
Project description:The bacterial cell wall has been a celebrated target for antibiotics and holds real promise as a target for the discovery of new chemical matter to surmount pervasive multi-drug resistance among pathogenic bacteria. While the walls of Gram-negative bacteria are composed primarily of peptidoglycan, those of Gram-positives are more substantial and contain, in addition, large amounts of the polymer teichoic acid, covalently attached to peptidoglycan. Wall teichoic acids are a diverse group of phosphate-rich, extracellular polysaccharides that have been largely regarded as ancillary cell surface components. Recently, wall teichoic acid was shown to be essential to the proper rod-shaped cell morphology of the prototype Gram-positive bacterium Bacillus subtilis and an important virulence factor for the human pathogen Staphylococcus aureus. Thus wall teichoic acid synthesis is an intriguing target for the development of new cell wall-active antibiotics. Nevertheless, recent studies have shown that the dispensability of genes encoding teichoic acid biosynthetic enzymes in both B. subtilis and S. aureus is paradoxical and complex. Here, we report here on the discovery of a promoter (PywaC), which is sensitive to lesions in teichoic acid synthesis. Using this promoter we developed a luminescent, cell-based, reporter system to take a chemical-genetic approach to understanding the complexity of wall teichoic acid biogenesis using a large collection of antibiotics of well characterized biological activity. Our results reveal surprising interactions among undecaprenol, peptidoglycan and teichoic acid biosynthesis that help explain the complexity of teichoic acid gene dispensability. Furthermore, the new reporter assay represents an exciting avenue for the discovery of novel antibacterial molecules that impinge broadly on Gram-positive bacterial cell wall biogenesis. Keywords: comparison between depleted and repleted tagD mutant
Project description:Clostridium botulinum is a Gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce a neurotoxin known as botulinum
Project description:Bacterial motility shows a strong evolvable feature depending on the environment. Hyper-motile E. coli could be isolated by evolving non-motile E. coli due to the mutations that enhanced transcriptional expression of the master regulator of the flagellum biosynthesis, FlhDC. These hyper-motile isolates showed reduced growth fitness but with the molecular mechanisms unrevealed. Here we obtained a novel type of hyper-motile isolates by evolving a weakly-motile E. coli K12 strain on the soft agar plates. These isolates carried high accumulated FlhDC proteins and they shared one single point mutation of ClpXV78F. The V78F affected the ATP binding to ClpX via steric repulsive effect and the mutated ClpXP protease lost most of its ability to degraded FlhDC and some other of its known targets. The signal tag of FlhDC for ClpXP recognition was also characterized. Intriguingly, in the hyper-motile strains, the highly enhanced expression of the motility genes was accompanied by the reduced expression of stress resistance genes relating to the reduced fitness of these isolates. Hence, ClpX appeared to be a novel and hot locus during the evolution of bacterial motility and the molecular mechanism of the trade-off between motility and growth was proposed for the first time.
Project description:We profiled the expression of circulating microRNAs (miRNAs) in mice exposed to gram-positive and gram-negative bacteria using Illumina small RNA deep sequencing. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.
Project description:Neutrophil activation plays a critical role in the inflammatory response to gram-negative bacterial infections. Lipopolysaccharide (LPS) from gram-negative bacterial has been shown to be a major mediator of neutrophil activation to produce pro-inflammatory cytokines, chemokines and ROS which are important to tissue damage in LPS induced septic shock. We used microarrays to detail the global gene expression of neutrophils from miR-125a+/+ and miR-125a-/- mice after LPS stimulation.
Project description:The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens – and especially intracellular bacteria – by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.
Project description:Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating bacterial disruption and invasion of the intestinal epithelium. Whilst C. jejuni infection can be reproduced in vitro using intestinal epithelial cell (IEC) lines, low numbers of bacteria invading IECs do not reflect these clinical symptoms. Performing in vitro assays under atmospheric oxygen conditions is neither optimal for microaerophilic C. jejuni nor reflects the low oxygen environment of the intestinal lumen. A Vertical Diffusion Chamber (VDC) model system creates microaerobic conditions at the apical surface and aerobic conditions at the baso-lateral surface of cultured IECs producing an in vitro system that closely mimics in vivo conditions in the human intestine. Nine-fold increases in interacting and eighty-fold increases in intracellular C. jejuni 11168H wild-type strain bacteria were observed after 24 hours co-culture with Caco-2 IECs in VDCs with microaerobic conditions at the apical surface compared to aerobic conditions. Increased bacterial interaction was matched by an enhanced and directional host innate immune response, particularly an increased baso-lateral secretion of the pro-inflammatory chemokine IL-8. Analysis of the invasive ability of a non-motile C. jejuni 11168H rpoN mutant in the VDC model system indicates that motility is an important factor in the early stages of bacterial invasion. The first report of the use of a VDC model system for studying the interactions of an invasive bacterial pathogen with IECs demonstrates the importance of performing such experiments under conditions that represent the in vivo situation and will allow novel insights into C. jejuni pathogenic mechanisms. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-125]