Project description:Background: The possible impact of changes in diet composition for the intestinal microbiome is mostly studied after some days of adaptation to the diet of interest. The question arises if few days are enough to reflect the microbial response to the diet by changing the community composition and function. The present study investigated the fecal microbiome of pigs in a time span of four weeks after a dietary change to get an insight of the needed adaptation period. Four different diets were used differing in either protein source (field peas meal vs. soybean meal) or the concentration of calcium and phosphorus (CaP). Results: Twelve pigs were sampled at seven time points within four weeks after the dietary change. Fecal samples were used to sequence the 16S rDNA amplicons, to analyse the microbial proteins via LC-MS/MS and to determine the SCFA production. The analysis of OTU abundances and quantification values of proteins showed a significant separation of three periods of time (p=0.001). Samples from the first day are used to define the ‘Zero phase’, samples of weeks one and two are combined as ‘metabolic phase’ and an ‘equilibrium phase’ was defined based on samples from week three and four. Only in this last phase, a separation according to the supplementation of CaP was significantly detectable (p=0.001). No changes were found based on the corn-soybean meal or corn-field peas administration. The analysis of possible factors causing this significant separation showed only an overall change of bacterial members and functional properties. The metaproteomic approach yields a total of about 9700 proteins, which were used to deduce possible metabolic functions of the bacterialcommunity.
Project description:The present study was conducted to investigate the effect of graded levels of black soldier fly larvae (BSFL) (Hermetia illucens) meal and BSFL paste in extruded diets for Atlantic salmon (Salmo salar). A total of 1260 Atlantic salmon with 34 g of mean initial weight were randomly distributed into 21 fiberglass tanks and fed (n=3) with seven extruded isolipidic and isonitrogenous diets for seven weeks. The experimental diets consisted of a positive control diet based on fishmeal, soy protein concentrate, corn gluten, faba bean and fish oil (Control_1); three diets with increased levels of full lipid BSFL meal, substituting 6.25% (6.25_IM), 12.5% (12.5_IM) and 25% (25_IM) of the protein content of Control_1; two diets with increased levels of full lipid BSFL paste, substituting 3.7% (3.7_IP) and 6.7% (6.7_IP); and of protein from Control_1 and a negative a control with 0.84 % of formic acid (Control_2). We investigate the effect of diets on growth performance, mmune response and health.
2021-02-10 | PXD019125 | Pride
Project description:16S rRNA sequnceing of fermented soybean meal and corn mixed substrate
Project description:There is few data about effects of temporal segmentation of meal composition on the metabolic response in humans. The meal-induced hormonal secretion in humans strongly depends on the meal composition and on the day time and may be involved in the circadian entrainment of metabolic gene expression. Our study investigated effects of two different diurnal patterns of meal composition (carbohydrate-rich meals in the morning and fat-rich meals in the evening or vice versa) on the gene expression in human subcutaneous adipose tissue (SAT).
Project description:Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthma.