Project description:Genome binding/occupancy profiling of ETS Variant Transcription Factor 6- Runt Related Transcription Factor 1 fusion protein (ETV6-RUNX1) in REH cells by high throughput sequencing. ETV6-RUNX1 is expressed in pediatric t(12;21) ETV6-RUNX1 B cell precursor acute lymphoblastic leukemia.
Project description:Genome binding/occupancy profiling of Runt Related Transcription Factor 1 (RUNX1), CBFA2T3 (ETO2, MRG16) and histone marks by high throughput sequencing. RUNX1 and CBFA2T3 are found overexpressed in pediatric t(12;21) ETV6-RUNX1 B cell precursor acute lymphoblastic leukemia. As CBFA2T3 is a transcription regulator, we hypothesized a potential collaboration between the transcription factor RUNX1 and CBFA2T3. Here, we investigated the molecular proximity between RUNX1 and CBFA2T3 proteins on chromatin and identified a regulatory loop between RUNX1 and CBFA2T3.
Project description:ETV6-RUNX1 is a first-hit mutation in childhood B cell precursor acute lymphoblastic leukaemia. ETV6-RUNX1 is a fusion protein which inherits the DNA-binding runt domain from RUNX1. Here we performed chromatin precipitation for native RUNX1 and ETV6-RUNX1 using RUNX1 antibodies and specifically for the ETV6-RUNX1 fusion using a V5-tag pull down.
Project description:Overwhelming evidence indicates that long non-coding RNAs have essential roles in tumorigenesis. Nevertheless, their expression and role in pediatric B-cell precursor acute lymphoblastic leukemia has not been extensively explored. Here, we conducted a comprehensive analysis of the long non-coding RNA transcriptome in ETV6/RUNX1 positive BCP-ALL, one of the most frequent subtypes of pediatric leukemia. An ETV6/RUNX1 expression signature was established, consisting of 596 lncRNAs (434 up and 162 down) using expression analysis of a series of primary patient samples. Subsequently, RNA sequencing from BCP-ALL cell lines and shRNA-mediated silencing of ETV6/RUNX1, illustrated that lnc-NKX2-3-1, lnc-TIMM21-5, lnc-ASTN1-1 and lnc-RTN4R-1 are bona fide ETV6/RUNX1 targets and could serve as novel biomarkers of this prevalent subtype of human leukemia.
Project description:Analysis of gene signatures in WT+Ctrl vs WT+ETV6-RUNX1, Btg1-/- and Btg1-/-+ETV6-RUNX1 in cKit+Ter119- fetal liver-derived hematopoietic progenitor cells (FL-HPCs). The Btg1-/-+ETV6-RUNX1 FL-HPCs display a strong increase in proliferation compared to WT+ETV6-RUNX1. Total RNA otained from WT+Ctrl, WT+ETV6-RUNX1, Btg1-/-+Ctrl and Btg1-/-+ETV6-RUNX1 FL-HPCs cells that were cultured for 12 days in expansion medium.
Project description:Analysis of gene signatures in WT+Ctrl vs WT+ETV6-RUNX1, Btg1-/- and Btg1-/-+ETV6-RUNX1 in cKit+Ter119- fetal liver-derived hematopoietic progenitor cells (FL-HPCs). The Btg1-/-+ETV6-RUNX1 FL-HPCs display a strong increase in proliferation compared to WT+ETV6-RUNX1.
Project description:RUNX1 and ETV6-RUNX1 possess the same DNA-binding runt domain and are therefore expected to bind to canonical RUNX motifs. As the ETV6-RUNX1 fusion arises in the context of native RUNX1 expression, and since RUNX1 is retained or amplified in B-ALL, the two proteins are likely to compete for the same target sites. To assess this, we performed RUNX1 ChIP-seq in the presence of exogenous ETV6-RUNX1 (or non DNA binding ETV6-RUNX1-R139G) and the reciprocal experiment: ETV6-RUNX1 ChIP (using a V5 tag) in the presence of exogenous RUNX1 or vector control.