Project description:In the North Sea and adjacent North Atlantic coastal areas fish experience relatively high levels of persistent organic pollutants. The aim of this study is to compare the mode of actions of environmentally relevant concentrations of halogenated compounds and their mixtures in Atlantic cod. Juvenile male cod were fed mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane and toxaphene), brominated (PBDEs) and fluorinated (Perfluorooctanesulfonate/PFOS) compounds for one month. One group received a mixture of all three compounds. Transcriptome analysis of liver samples was performed to identify the main affected pathways. Accumulated levels of chemicals in cod liver reflected concentrations found in wild fish. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated and fluorinated) converged on activation of the unfolded protein response (UPR). The results of our transcriptomics analysis suggest that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
Project description:Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here we used environmental metaproteomics to obtain information about the identity and activity of subsurface microbial populations in coal-tar-contaminated groundwater. The present study reports metaproteomic data showing high representation of Candidatus Methylomirabilis oxyfera in our study site’s subsurface microbial community. In addition, eight of the nine proteins of the n-damo pathway were identified—indicating that n-damo is an active process occurring in situ in this habitat.
2022-02-22 | PXD001036 | Pride
Project description:Phosphate (bio)mineralisation remediation of 90Sr contaminated groundwaters
Project description:The proteome of the anaerobic bacterium Dehalococcoides mccartyi strain CBDB1 from the phylum Chloroflexi was investigated. D. mccartyi strain CBDB1 is a model organism for organohalide respiration where halogenated organic compounds serve as terminal electron acceptors. A wide range of halogenated organic compounds have been shown to be dehalogenated by the strain CBDB1. Therefore, D. mccartyi strain CBDB1 is a promising candidate for bioremediation application. Proteomic analysis of cultures grown with hexachlorobenzene as only electron acceptor resulted in identification of 8,491 distinct peptides which represents 1,023 proteins. A coverage of 70% of the 1,458 annotated proteins for strain CBDB1 was achieved. In addition, a spectral library was created from the annotated spectra. By using proteogenomics, 18 previously not annotated peptides were identified which contribute to four proteins previously not annotated and corrections in length of eight protein coding sequences.
Project description:Previous analysis of gene transcript levels of Geobacter species in groundwater during in situ bioremediation of a uranium-contaminated aquifer detected expression of genes encoding superoxide dismutase (sodA) and cytochrome d ubiquinol oxidase (cydA), proteins known to be involved in the response to oxidative stress in other microorganisms. In order to further elucidate gene expression patterns that could be attributed to oxygen exposure, G. uraniumreducens was grown with acetate as the electron donor and fumarate as the electron acceptor in the presence of oxygen and compared to non-oxygen treated cultures.
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling
Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene expression in a contaminated site (site B) under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 4 M-BM-5g of labelled antisense mRNA from 3 groundwater samples were hybridized on the microarray. A 3-chip study was performed, each corresponding to hybridization with 4 M-BM-5g of labelled antisense mRNA retrieved from a monitoring well of a contaminated site (site B). Each probe (760nt) on the microarray was synthesized in eight replicates, and a total of 5,707 random probes was used to determine the background noise. Groundwater samples were collected from a contaminated site (site B) from three monitoring wells (P1, P2 and P3). P1: well located upstream to the contamination source. P2: well in the contamination source. P3 : well located downstream to the contamination source.
Project description:Metagenome-assembled genomes (MAGs) have revealed the existence of novel bacterial and archaeal groups and provided insight into their genetic potential. However, metagenomics and even metatranscriptomics cannot resolve how the genetic potential translates into metabolic functions and physiological activity. Here, we present a novel approach for the quantitative and organism-specific assessment of the carbon flux through microbial communities with stable isotope probing-metaproteomics and integration of temporal dynamics in 13C incorporation by Stable Isotope Cluster Analysis (SIsCA). We used groundwater microcosms labeled with 13CO2 and D2O as model systems and stimulated them with reduced sulfur compounds to determine the ecosystem role of chemolithoautotrophic primary production. Raman microspectroscopy detected rapid deuterium incorporation in microbial cells from 12 days onwards, indicating activity of the groundwater organisms. SIsCA revealed that groundwater microorganisms fell into five distinct carbon assimilation strategies. Only one of these strategies, comprising less than 3.5% of the community, consisted of obligate autotrophs (Thiobacillus), with a 13C incorporation of approximately 95%. Instead, mixotrophic growth was the most successful strategy, and was represented by 12 of the 15 MAGs expressing pathways for autotrophic CO2 fixation, including Hydrogenophaga, Polaromonas and Dechloromonas, with varying 13C incorporation between 5% and 90%. Within 21 days, 43% of carbon in the community was replaced by 13C, increasing to 80% after 70 days. Of the 31 most abundant MAGs, 16 expressed pathways for sulfur oxidation, including strict heterotrophs. We concluded that chemolithoautotrophy drives the recycling of organic carbon and serves as a fill-up function in the groundwater. Mixotrophs preferred the uptake of organic carbon over the fixation of CO2, and heterotrophs oxidize inorganic compounds to preserve organic carbon. Our study showcases how next-generation physiology approach like SIsCA can move beyond metagenomics studies by providing information about expression of metabolic pathways and elucidating the role of MAGs in ecosystem functioning.