Project description:Mettl3 was conditionally knocked out from retinal progenitor cells. Metll3 deficient retinas exhibited disrupted cell cycle during late retinogenesis and abnormality in retinal architecture and physiology.
Project description:To study the function of Mettl3 during retinal development, we used Six3-Cre and Mettl3floxed mice to conditionally knock out Mettl3 from retinal progenitor cells. The mutant mice show defects in late-stage retinogenesis and structural and physiological homeostasis of the retina.
Project description:we find METTL3 associates with polyribosomes and promotes translation. METTL3 depletion inhibits translation, and both wild-type and catalytically inactive METTL3 promote translation when tethered to the 3' untranslated region (UTR) of a reporter mRNA. Mechanistically, METTL3 enhances mRNA translation through an interaction with the translation initiation machinery. m6A seq in A549 and H1299 cells, RNA seq in METTL3 knockdown cells
Project description:To gain insight into possible processes that require m6A for their function, METTL3 was knocked down (KD) in HepG2 cells by siRNA transfections Differential expression analysis of METTL3 KD versus mock-transfected HepG2 cells, in 2 biological replicates
Project description:label the cells overexpressed Myc tagged METTL3 and Flag tagged WTAP with 4-SU, the RNA bound by METT3,WTAP can be got by Myc or Flag IP followed by RNA isolation by using the TRIzol (Invitrogen) reagent by following the company manual.the RNA was then used for library preparation using a TruSeq™ RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol.The libraries were sequenced using HiSeq2000 (Illumina) in single-read mode, creating reads with a length of 50 bp. Sequencing chemistry v2 (Illumina) was used and samples were multiplexed in two samples per lane. discovery of the binding motif of METTL3,WTAP in METTL3,WTAP overexpressed Human 293T cells
Project description:METTL3 and METTL14 are considered to faithfully form the m6A writing complex in a 1:1 ratio, regulating the fate of mRNA by adding m6A modifications. However, recent studies have shown inconsistent expression and prognostic value of METTL3 and METTL14 in some tumors, suggesting that they may not be faithful in tumors. Pan-cancer analysis based on TCGA data reveals significant differences in expression, function, tumor burden correlation, and immune correlation between METTL3 and METTL14, especially in esophageal squamous cell carcinoma (ESCC). Knockdown of METTL3 significantly inhibits the cell proliferation in vitro and in vivo in ESCC EC109 cells, while the impact of METTL14 knockdown on proliferation is limited, and it cannot abolish the expression of METTL3 protein. mRNA-seq results indicate that METTL3 independently regulates the expression of 1615 genes, while only 776 genes are co-regulated by METTL3 and METTL14. Furthermore, through immunofluorescence co-localization, it is observed that METTL3 and METTL14 have certain inconsistencies in cellular localization. HPLC-MS results show that METTL3 independently binds to the Nop56p-associated pre-rRNA complex and mRNA splicing complex, separate from METTL14. Through bioinformatics and various omics studies, we have preliminarily discovered that METTL3 independently regulating tumor cell proliferation, and the participation in mRNA splicing may be a critical molecular mechanism. Our study provides an experimental basis and theoretical foundation for further understanding of the m6A writing complex and tumor therapy targeting METTL3.