Project description:Comparison of gene expression level by Illumina sequencing of rat skin from young and old animals. We identified differentially expressed genes and provide functional profiles, which give insights into the aging process of short-lived rodents.
Project description:Aging is a normal physiological phenomenon of organisms. Skin aging is a specific manifestation of aging of local human organs. In this study, we used mass spectrometry to perform non-invasive analysis of the skin of 20 healthy young and elderly people in China. Quantitative proteomic analysis identified differentially expressed proteins.
Project description:Fibroblasts are the main dermal cell type and are essential for the architecture and function of human skin. Important differences have been described between fibroblasts localized in distinct dermal layers, and these cells are also known to perform varied functions. However, this phenomenon has not been analyzed comprehensively yet. Here we have used single-cell RNA sequencing to analyze >15,000 cells from a sun-protected area in young and old donors. Our results define four main fibroblast subpopulations that can be spatially localized and functionally distinguished. Importantly, intrinsic aging reduces this fibroblast ‘priming’, generates distinct expression patterns of skin aging-associated genes, and substantially reduces the interactions of dermal fibroblasts with other skin cell types. Our work thus provides comprehensive evidence for a functional specialization of human dermal fibroblasts and suggests that the age-related loss of fibroblast priming contributes to human skin aging.
Project description:In this study we explored the effects of chronological and photoageing on the miRNome of human skin. To this end, miRNA expression was analysed in biopsies collected from sun-exposed (outer arm) and sun-protected (inner arm) skin from fair-skinned (phototype II/III) healthy female volunteers of two age groups: young, 18-25 years and aged, >70 years. Strict inclusion criteria were used for photoageing scoring and for chronological ageing. Microarray analysis revealed that chronological ageing had minor effect on the human skin miRNome. In contrast, photoageing had a robust impact on miRNAs, and a set of miRNAs differentially expressed between sun-protected and sun-exposed skin of the young and aged groups was identified. We have performed miRNome analysis (using microarray) on RNA isolated from sun-exposed and sun-protected skin of young and old females
Project description:Background: Skin aging is associated with intrinsic processes that compromise structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. We used Affymetrix microarrays to evaluate genome-wide expression in tail skin from young (5 month) and old (30 month) CB6F1 mice (males and females). Genome-wide expression was evaluated in tail skin from young (5 months) and old (30 months) CB6F1 mice of both sexes. Samples were collected simultaneously but RNA samples were processed in two separate batches.
Project description:Mass spectrometry was performed with an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) interfaced with an UltiMate 3000 Binary RSLCnano System (Dionex). Proteome Discoverer v.1.4 (Thermo Scientific) with SEQUEST HT search engines was used for the spectra-preprocessing and HCD MS2 spectra were used for peptide identification and quantitation based on TMT reporter ions. TMT isobaric comparison of old versus young haematopoietic stem and progenitor cells. Young 1 and Young 2 are samples 126 and 128 of dataset UTH_1. Old 1 and Old 2 are samples 129 and 130 of UTH_1. Young 3 is sample 131 and Old 3 is sample 130 of dataset UTH_4.