Project description:Aging is a normal physiological phenomenon of organisms. Skin aging is a specific manifestation of aging of local human organs. In this study, we used mass spectrometry to perform non-invasive analysis of the skin of 20 healthy young and elderly people in China. Quantitative proteomic analysis identified differentially expressed proteins.
Project description:Comparison of gene expression level by Illumina sequencing of rat skin from young and old animals. We identified differentially expressed genes and provide functional profiles, which give insights into the aging process of short-lived rodents.
Project description:Fibroblasts are the main dermal cell type and are essential for the architecture and function of human skin. Important differences have been described between fibroblasts localized in distinct dermal layers, and these cells are also known to perform varied functions. However, this phenomenon has not been analyzed comprehensively yet. Here we have used single-cell RNA sequencing to analyze >15,000 cells from a sun-protected area in young and old donors. Our results define four main fibroblast subpopulations that can be spatially localized and functionally distinguished. Importantly, intrinsic aging reduces this fibroblast ‘priming’, generates distinct expression patterns of skin aging-associated genes, and substantially reduces the interactions of dermal fibroblasts with other skin cell types. Our work thus provides comprehensive evidence for a functional specialization of human dermal fibroblasts and suggests that the age-related loss of fibroblast priming contributes to human skin aging.
Project description:Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumour progression. Myofibroblasts have previously mostly been distinguished from normal fibroblasts only by the expression of α smooth muscle actin (αSMA). We now identify AOC3, a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast reacting monoclonal antibody (mAb), PR2D3. The normal and tumour tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by non-enzymatic procedures. Whole genome microarray mRNA expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly expressed differentially between these two cell types; NKX2-3 and LRRC17 are expressed in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. Transforming Growth Factor β (TGFβ) substantially down-regulated AOC3 expression in myofibroblasts but not in skin fibroblasts, in which it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and an increased expression of the fibroblast associated gene, SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3 and other markers, are a distinctly different cell type from TGFβ activated fibroblasts. colorectal myofibroblast specific markers and expression profiles were sought by comparing four primary myofibroblast cultures to a panel of four dermal and foreskin fibroblast cell lines Four primary myofibroblast cultures established from adult human colon compared to four skin fibroblast cell lines to identify intestinal myofibroblast specific markers
Project description:Ageing compromises the mechanical properties of skin, with increased fragility and coincident slowing of the healing process making aged skin susceptible to chronic wounding. The ageing process is driven by an aggregation of damage to cells and extracellular matrix, compounded by regulatory changes, including age-associated hormonal dysregulation. Here we report on the correlation between mechanical properties and composition of skin from ovariectomised and chronologically aged mice, to assess the extent to which estrogen deprivation drives dermal ageing. We found that age and estrogen abrogation affected skin mechanical properties in contrasting ways: ageing lead to increased tensile strength and stiffness while estrogen deprivation had the opposite effect. Mass spectrometry proteomics showed that the quantity of extractable fibrillar collagen-I decreased with ageing, but no change was observed in ovariectomised mice. This observation, in combination with measurements of tensile strength, was interpreted to reflect changes to the extent of extracellular matrix crosslinking, supported by a significant increase in the staining of advanced glycation endpoints in aged skin. Loss of mechanical strength in the ovariectomy model was consistent with a loss of elastic fibres. Other changes in extracellular matrix composition broadly correlated between aged and ovariectomised mice, indicative of the role of estrogen-related pathways in ageing. This study offers a coherent picture of the relationship between tissue composition and mechanics, but suggests that the deleterious effects of intrinsic skin ageing are compounded by factors beyond hormonal dysregulation.
Project description:We carried out the analysis using human skin fibrobllast HCA2 (MJ90) cells. Cells were indcued to be senescent cells by treatment with RO3306 and Nutlin3a. The transcriptome analysis between young cells (uniduced cells) nd senescent cells revealed lonrf2, a ubiqutin E3 ligase, is one of the genes highly expressed in senescnet cells.