Project description:Bait-capture based Single Molecule Footprinting (SMF) data from Sonmezer et al., 2020. SMF data is obtained by treating isolated nuclei with methyltransferases, where binding of proteins on DNA, e.g. nucleosomes and TFs, leave behind unmethylated cytosines as footprints. Data in this experiment comprises SMF data obtained from ES, DNMT-TKO, and neural progenitor (NP) cells. These data were generated by employing Agilent Sure-Select Mouse Methyl-Seq kit, enriching the sample for regulatory regions of mouse genome prior to library preparation. Thus, these data contain high coverage accessibility information at regulatory loci in different cell types.
Project description:Purpose: to compare different Methyl Binding Domain (MBD) based kits for DNA-methylation sequencing using Reduced Representation Bisulfite Sequencing (RRBS) data for validation, and to determine whether data quality can also be derived from inherent sequence data characteristics MBD-seq using 5 different kits (MethylCap, MethylCollector, MethylCollector Ultra, MethylMiner, MethylMagnet) was applied on 3 commonly used cell lines (DU145, HCT15, PC3), for which also RRBS data were generated.
Project description:Single Molecule Footprinting (SMF) data from Sonmezer et al., 2020. SMF data is obtained by treating isolated nuclei with methyltransferases, where binding of proteins on DNA, e.g. nucleosomes and TFs, leave behind unmethylated cytosines as footprints. Data in this experiment comprises SMF data obtained from ES cells and various derivatives of ES cells, such DNMT-null, REST-knockout ES cells, neural progenitors and ES cells treated with NRF1 sirNA.