Project description:Single cell RNAseq was performed on naïve adult mouse lumbar dorsal root ganglia (DRG) cells. Neuronal and non-neuronal cell populations were identified.
Project description:Genes are up and down regualted in DRG and spinal dorsal cord after peripheral nerve injury WT male adult with sciatic and femoral nerve transection 7 days, RNA was purified from ipilateral or contralateral L4-L6 DRGs or lumbar spinal dorsal cords
Project description:The goal of this study was to analyze global gene expression in specific populations of nociceptor sensory neurons, the neurons that detect damaging/noxious stimuli. The dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia are anatomically distinct peripheral sensory ganglia that contain nociceptors which innervate skin, gut, lungs, and other distinct organ tissues. We used flow cytometry to purify nociceptors from these ganglia and profiled their global gene expression signatures to compare gene expression between these different anatomically distinct nociceptors. Nav1.8-Cre were bred with Rosa26-TdTomato to generate Nav1.8-Cre/R26-TdTomato reporter progeny, where all peripheral nociceptor neurons are genetically marked with red fluroescence due to specific expression of the TTX- resistant sodium channel Nav1.8. Lumbar region dorsal root ganglia (DRG), trigeminal ganglia, and nodose ganglia were dissected from mice (3 mice were pooled/sample). Highly red fluorescent neurons were Facs purified, RNA extracted, and processed for microarray analysis.
Project description:Preconditioning nerve injury drives pro-regenerative perineuronal macrophage activation in dorsal root ganglia (DRG). The present study reports that oncomodulin (ONCM) is produced from the regeneration-associated macrophages (RAMs) and strongly influences regeneration of DRG sensory axons. ONCM in macrophages was necessary to produce RAMs in the in vitro model of neuron-macrophage interaction and played an essential role in for preconditioning-induced neurite outgrowth. In order to gain insight on potential mechanisms downstream of ONCM for potent neurite outgrowth activity, we performed RNA-seq using cultured DRG neurons treated with ONCM.
Project description:To identify the mechanism by which the miR-183 cluster works to cause change of the fate of early dorsal root ganglion progenitor cells, we compared RNA expression in E12.5 lumbar dorsal root ganglia from the miR conditional knockout mice to control mice
Project description:Nociceptors play an essential role in both acute pain and chronic pain conditions. In this study, we examined the proteome of mouse dorsal root ganglia and compared NaV1.8Cre+/-; ROSA26-flox-stop-flox-DTA (Diphtheria toxin fragment A) mutant mice (NaV1.8Cre-DTA), in which NaV1.8-positive neurons (mainly nociceptors) in dorsal root ganglia (DRG) were ablated, with respective littermate wildtype controls.