Project description:Over the last 30 years the soil bacterium Agrobacterium tumefaciens has been the workhorse tool for plant genome engineering. Replacement of native tumor-inducing (Ti) plasmid elements with customizable cassettes enabled insertion of a sequence of interest as “Transfer DNA” (T-DNA) into the plant genome of interest. Although these T-DNA transfer mechanisms are well understood, detailed understanding of the structure and epigenomic status of insertion events was limited by current technologies. To fill this gap, we analyzed transgenic Arabidopsis thaliana lines from three widely used collections (SALK, SAIL and WISC) with two single molecule technologies, optical genome mapping and nanopore sequencing. Optical maps for four randomly selected T-DNA lines revealed between one and seven insertions/rearrangements with unexpectedly large sizes ranging from 27 to 236 kilobases. De novo nanopore-based genome assemblies for two heterozygous lines resolved T-DNA structures up to 36 kb and revealed large-scale T-DNA associated translocations and exchange of chromosome arm ends. The multiple internally rearranged nature of T-DNA arrays, consisting of identical T-DNA/backbone concatemers made full assembly even for long nanopore reads impossible. For the current TAIR10 reference genome, nanopore contigs corrected 83% of non-centromeric misassemblies. This unprecedented nucleotide-level definition of T-DNA insertions enabled the mapping of epigenome data. The SALK_059379 T-DNA insertions were enriched for 24nt siRNAs and contained dense cytosine DNA methylation. Transgene silencing via the RNA directed DNA methylation pathway was confirmed by in planta assays. In contrast, SAIL_232 T-DNA sequence was predominantly targeted by 21/22nt siRNAs, and DNA methylation and silencing was limited to the GUS gene, but not the resistance gene. With the emergence of genome editing technologies that rely on Agrobacterium for gene delivery, this study provides new insights into the structural impact of engineering plant genomes and demonstrates the utility of state-of-the-art long-range sequencing technologies to rapidly identify unanticipated genomic changes.
Project description:Somatic L1 retrotransposition events have been shown to occur in epithelial cancers1-8. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers. Surprisingly, we found somatic L1 insertions not only in all cancer types and metastases, but also in colonic adenomas, well-known cancer precursors. Some insertions were also present in low quantities in normal GI tissues, occasionally caught in the act of being clonally fixed in the adjacent tumors. Insertions in adenomas and cancers numbered in the hundreds and many were present in multiple tumor sections implying clonal distribution. Our results demonstrate that extensive somatic insertional mutagenesis occurs very early during the development of GI tumors, probably before dysplastic growth. We assessed the impact of somatic L1 insertions on the expression of the corresponding protein-coding genes by comparing protein abundance in the polyp with the highest number of somatic L1 insertions with that of its paired normal colon using mass spectrometry analysis. Of the 10 validated somatic insertions that were in protein coding regions in the polyp, two proteins – KIAA1217 and WARS2 – were downregulated in the adenoma >90% and >70%, respectively.
Project description:Background: Evolutionary engineering is a powerful approach to isolate suppressor mutants and industrially relevant genotypes. Until recently, DNA microarray analysis was the only affordable genome-wide approach to identify the responsible mutations. This situation has changed due to the rapidly decreasing costs of whole genome (re)sequencing. DNA microarray-based mRNA expression analysis and whole genome resequencing were combined in a study on lactate transport in Saccharomyces cerevisiae. Jen1p is the only S. cerevisiae lactate transporter reported in literature. To identify alternative lactate transporters, a jen1Δ strain was evolved for growth on lactate. Results: Two independent evolution experiments yielded Jen1p-independent growth on lactate (μmax 0.14 and 0.18 h-1 for single-cell lines IMW004 and IMW005, respectively). Whereas mRNA expression analysis did not provide leads, whole-genome resequencing showed different single nucleotide changes (C755G/Leu219Val and C655G/Ala252Gly) in the acetate transporter gene ADY2. Analysis of mRNA levels and depth of coverage of DNA sequencing combined with karyotyping, gene deletions and diagnostic PCR showed that in IMW004 an isochromosome III (~475 kb), which contains two additional copies of ADY2C755G, was formed via crossover between YCLWΔ15 and YCRCΔ6. Introduction of the ADY2 alleles in a jen1 ady2 strain resulted in growth on lactate (μmax 0.14 h-1 for Ady2pLeu219Val and 0.12 h-1 for Ady2pAla252Gly). Conclusions: Whole-genome resequencing of yeast strains obtained from independent evolution experiments enabled rapid identification of a key gene that was not identified by mRNA expression analysis of the same strains. Reverse metabolic engineering showed that mutated alleles of ADY2 (C655G and C755G) encode efficient lactate transporters.
Project description:To investigate the mechanisms of cancer cell migration during perineural invasion in pancreatic cancer, we injected fluorescently labelled MiaPaCA-2 cells in the sciatic nerves and collected the leader and lagger cells.
Project description:Genomic binding of 203 transcriptional regulatory proteins under various conditions. Hybridizations of fluorescently-labelled immunoprecipitated vs. whole-cell extract samples on S. cerevisiae intergenic arrays.
Project description:A reporter transgene displayed parental imprinting in mouse embryos when positioned into the Itga6 gene. The strong lacZ pattern of expression scored in embryos inheriting the transgene from a male was not present when transmitted from a female. The transgene exhibited maternal allele-specific DNA hyper-methylation acquired in the germ-line and histone modifications corresponded to profiles described at known imprinted loci. Chromosome conformation analyzes revealed distinct, parent-of-origin interaction domains, with a more compact structure characterizing the maternally inherited repressed allele. The analysis of such transgene insertions with a selective potential to induce imprinting may help understanding the mechanisms identifying particular loci as targets for allele-specific repression. Data were quantile normalized within 4C/input replicate groups and scaled to medial feature intensity of 100 using TAS software (Affymetrix), generating signal.bar files. For each genomic position, a data set was generated consisting of all (PM-MM) pairs mapping within a sliding window of 250 bp. For Inv(rel5-Itga6) tissues, two independent 4C experiments were performed and merged in the .bar file.
Project description:C. elegans oogenesis arrest offers a unique and biologically relevant opportunity to investigate how condensation reorganizes the transcriptome in the context of cellular adaptation to quiescence. To investigate how RNA self-organization into condensates controls mRNA cytosolic stoichiometries depending on sequence identity and translational activity, we adapted a new Fluorescent Activated Particle Sorting (FAPS) method to selectively sort germline P-bodies from C. elegans oocytes. Fluorescently labelled in oocytes, GFP:CAR-1 P-bodies were formaldehyde fixed and FAPS sorted from whole animal extracts by their size and fluorescence. We then performed gene expression profiling analysis using data obtained from RNA-seq of oocyte P-bodies, dissected oocytes and whole animal extracts.
Project description:Somatic L1 retrotransposition events have been shown to occur in epithelial cancers1-8. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers. Surprisingly, we found somatic L1 insertions not only in all cancer types and metastases, but also in colonic adenomas, well-known cancer precursors. Some insertions were also present in low quantities in normal GI tissues, occasionally caught in the act of being clonally fixed in the adjacent tumors. Insertions in adenomas and cancers numbered in the hundreds and many were present in multiple tumor sections implying clonal distribution. Our results demonstrate that extensive somatic insertional mutagenesis occurs very early during the development of GI tumors, probably before dysplastic growth.