Project description:To investigate the effect of synthetic phenol-soluble modulins (PSMs) secreted by S. epidermidis on primary keratinocytes. We then performed gene expression profiling analysis using data obtained from RNA-seq of 4 different cells at two time points.
Project description:To investigate the effect of both S. epidermidis phenol-soluble modulins (PSMs) and EcpA genetic knockouts on murine back skin. We then performed gene expression profiling analysis using data obtained from RNA-seq of 5 conditions (n=3 per condition).
Project description:To determine the genes that change mRNA transcript abundance in primary human keratinocytes treated by S. aureus phenol-soluble modulins (PSM), we stimulated keratinocytes for 24h with either DMSO(-) Ctl or synthetic PSMα3 (5μg/mL).
Project description:Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Here, to determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium. Keywords: wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II
Project description:Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Here, to determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium. Keywords: wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare transcriptome profiling (RNA-seq) between Primary Keratinocytes and OSM-treated Primary Keratinocytes Methods: mRNA profiles of Primary Keratinocytes and OSM-treated Primary Keratinocytes were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks.
Project description:In search for factors, overexpression of which in human dermal fibroblasts causes direct conversion to cells similar to keratinocytes, micro RNA expression profiles of human primary keratinocytes and human primary dermal fibroblasts are investigated. Skin samples obtained from 3 different sites of 1 subject were used for establishment of 3 primary keratinocytes and 3 primary dermal fibroblasts. Thus obtained 3 primary keratinocytes and primary dermal fibroblasts underwent micro RNA profiling.