Project description:When evolution leads to differences in body size, organs generally scale along. A well-known example of the tight relationship between organ and body size is the scaling of mammalian molar teeth. To investigate how teeth scale during development and evolution, we compared mouse and rat molar development from initiation through final size. Whereas the linear dimensions of the rat first lower molar are twice that of the mouse molar, their shapes are largely the same. We found that scaling of the molars starts early, and that the rat molar is patterned equally as fast but in a larger size than the mouse molar. Using transcriptomics, we discovered that a known regulator of body size, insulin-like growth factor 1 (Igf1), is more highly expressed in the rat molars compared to the mouse molars. Ex vivo and in vivo mouse models demonstrated that modulation of the IGF pathway reproduces several aspects of the observed scaling process. Furthermore, analysis of IGF1-treated mouse molars and computational modeling indicate that IGF signalling scales teeth by simultaneously inhibiting the cusp patterning programme and by enhancing growth, thereby providing a relatively simple mechanism for scaling teeth during development and evolution. Finally, comparative data from shrews to elephants suggest that this scaling of patterning mechanism regulates the minimum tooth size possible, as well as the patterning potential of large teeth.
Project description:To identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between 1 and 10 days postnatal to identify genes differentially expressed when compared to 16 control tissues (GEO accession # GSE1986). Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by qRT-PCR analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm). Experiment Overall Design: mRNA from molar teeth extracted from Swiss Webster mouse pups between 1 and 10 days post-natal was pooled, labeled, and hybridized in quadruplicate to Affymetrix Mouse Genome Expression 430 2.0 microarrays. This data was compared to that of 16 control tissues (GEO accession # GSE1986) to identify genes differentially expressed in the DMT mRNA.
Project description:Insight into the role of Insulin-like Growth Factor (IGF) in development of lungs has come from the study of genetically modified mice. IGF1 is a key factor during lung development. IGF1 deficiency in the neonatal mouse causes respiratory failure collapsed alveoli and altered alveolar septa. To further characterize IGF1 function during lung development we analyzed Igf1-/- mouse prenatal lungs in a C57Bl/6 genetic background. Mutant lungs showed disproportional hypoplasia, disorganized extracellular matrix and dilated alveolar capillaries. IGF1 target genes during lung maturation were identified by analyzing RNA differential expression in Igf1-/- lungs using microarrays. Lungs from E18.5 were isolated from both Igf1+/+ wild type and Igf1-/- null mice and pooled to obtain RNA. Heterozygous male and female with a genetic background C57BL/6J were mated to obtain embryos at embrionic (E) stage 18.5 days post coitum (E18.5). 3 biological replicates per genotype.
Project description:Insight into the role of Insulin-like Growth Factor (IGF) in development of lungs has come from the study of genetically modified mice. IGF1 is a key factor during lung development. IGF1 deficiency in the neonatal mouse causes respiratory failure collapsed alveoli and altered alveolar septa. To further characterize IGF1 function during lung development we analyzed Igf1-/- mouse prenatal lungs in a C57Bl/6 genetic background. Mutant lungs showed disproportional hypoplasia, disorganized extracellular matrix and dilated alveolar capillaries. IGF1 target genes during lung maturation were identified by analyzing RNA differential expression in Igf1-/- lungs using microarrays.
Project description:Organoid models provide powerful tools to study tissue biology and development in a dish. Here, we established first-time organoid models from early-postnatal (postnatal day 7) mouse molar and incisor, capable of differentiation toward ameloblast-like cells in vitro. To more in detail characterise organoids from mouse molar and incisor, bulk RNA-sequencing was performed on the following (1) early passage (passage 0) organoids from both tooth types grown in basal tooth organoid medium (TOM) with or without addition of exogenous epidermal growth factor (EGF); and (2) late passage (passage 5) organoids grown in TOM+EGF or differentiation medium (DM).