Project description:In hypertension, abnormal regulation of microcirculation and endothelial dysfunction enhances vulnerability to hypertensive brain damage. In addition to lowering blood pressure, blockade of Angiotensin II AT1 receptors protects against stroke and stress in different animal models and this treatment may be of therapeutic advantage. We studied gene expression using Affymetrix Rat Genome U34A arrays from brain microvessels of spontaneously hypertensive rats (SHR) and their normotensive Wistar Kyoto controls (WKY) rats treated with an AT1 antagonist (candesartan, 0.3 mg/kg/day) or vehicle via osmotic minipumps for 4 weeks. Experiment Overall Design: brain microvessels from hypertensive and normotensive rats treated with candesartan and vehicle were analyzed
Project description:In hypertension, abnormal regulation of microcirculation and endothelial dysfunction enhances vulnerability to hypertensive brain damage. In addition to lowering blood pressure, blockade of Angiotensin II AT1 receptors protects against stroke and stress in different animal models and this treatment may be of therapeutic advantage. We studied gene expression using Affymetrix Rat Genome U34A arrays from brain microvessels of spontaneously hypertensive rats (SHR) and their normotensive Wistar Kyoto controls (WKY) rats treated with an AT1 antagonist (candesartan, 0.3 mg/kg/day) or vehicle via osmotic minipumps for 4 weeks. Keywords: other
Project description:The microbiome plays a significant role in gut brain communication and is linked to several animal and human diseases. Hypertension is characterized by gut dysbiosis, and this study aimed to determine how the gut microbiome differed between male and female normotensive and hypertensive rodents. WKY is a genetic control for spontaneous hypertensive rats or SHR which is well documented to have elevated blood pressure at approximately 8 to 10 weeks. We compared the microbiome of normotensive and hypertensive rodents using a meta-genomics approach.
Project description:Our previous findings suggest that the nucleus of the solitary tract (NTS), a pivotal region for regulating the set-point of arterial pressure, exhibits abnormal inflammation in pre-hypertensive and spontaneously hypertensive rats (SHRs) together with elevated anti-apoptotic and low apoptotic factor levels compared with that of normotensive Wistar–Kyoto (WKY) rats. Whether this chronic condition affects neuronal growth and plasticity in the NTS remains unknown. To unveil the characteristics of the neurodevelopmental environment in the NTS of hypertensive rats, we investigated the gene expression profile of neurotrophins and their receptors in SHRs compared to that of normotensive rat WKY.
Project description:Left ventricle gene expression was analyzed in three models of hypertension in order to clarify the molecular mechanisms associated with left ventricular hypertrophy. Transgenic heterozygous TGR(mRen2)27 rats, overexpressing the mouse renin gene, and their littermate negative controls, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY), and Lyon hypertensive rats (LH) and their normotensive controls (LL) were included in the study.
Project description:We investigated morphometric structure and gene expression by microarray analysis in a small diameter artery, branch of the saphenous artery (a resistance artery), in representative models of renin-angiotensin system (RAS)-dependent and glucocorticoid hypertension, using the spontaneously hypertensive rat (SHR) and adrenocorticotropic hormone (ACTH)-induced hypertensive rat, respectively. Sixteen-week-old male Wistar-Kyoto (WKY) and age-matched spontaneously hypertensive rats (SHR) were used. Keywords: Comparison of global gene expression in resistance arteries of normotensive and genetically hypertensive rats and ACTH-treated rats.
Project description:Hypertension is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects that are largely unknown. In this study we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from pons and medulla oblongata of newborn spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats, a widely documented animal model of hypertension. We found 358 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 24 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to blood pressure regulation; however there are several genes differentially expressed in SHR not yet associated to hypertension or participating in blood pressure regulation. These constitute a rich resource for the identification and characterization of novel genes involved in hypertension development, or associated to phenotypical differences observed in SHR relative to WKI. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution in this pathology. Keywords: Gene expression profiling of cultured cells from brainstem of spontaneously hypertensive and normotensive Wistar Kyoto rats