Project description:In this study, the complete mitogenome of an entomopathogenic fungus Akanthomyces lecanii is assembled and annotated. This circular mitogenome is 24,643 bp in length and consists of 2 rRNA genes (rnl and rns), 26 tRNA genes and 14 standard protein-coding genes of the oxidative phosphorylation system. Only one intron (group IA) is identified, which invades rnl and carries an ORF coding for ribosomal protein S3. Phylogenetic analysis based on concatenated mitochondrial nucleotide sequences confirms A. lecanii in Cordycipitaceae, and A. lecanii clusters together with Akanthomyces muscarius.
Project description:Akanthomyces is a genus of invertebrate-pathogenic fungi from the family Cordycipitaceae (Ascomycota, Hypocreales). Its species occurs on two different types of hosts, spiders and insects, and in the latter case specifically Lepidoptera adults. Three new species of Akanthomyces, A. noctuidarum, A. pyralidarum, and A. tortricidarum occurring on adult moths from Thailand are proposed based on the differences of their morphological characteristics and molecular data. Phylogenetic analyses using a combined dataset, including the internal transcribed spacer regions, the large subunit of the ribosomal DNA, translation elongation factor 1-α, the largest subunit of RNA polymerase II, and the second largest subunit of RNA polymerase II, support the delimitation of these new species in Akanthomyces.
Project description:Five new compounds including the glycosylated β-naphthol (1, akanthol), a glycosylated pyrazine (2, akanthozine), and three amide derivatives including a hydroxamic acid derivative (3-5) were isolated from the spider-associated fungus Akanthomyces novoguineensis (Cordycipitaceae, Ascomycota). Their structures were elucidated by using high resolution mass spectrometry (HRMS) and NMR spectroscopy. In this study, the antimicrobial, cytotoxic, anti-biofilm, and nematicidal activities of the new compounds were evaluated. The distribution pattern of secondary metabolites in the species was also revealed in which more isolates of A. novoguineensis were encountered and their secondary metabolite profiles were examined using analytical HPLC with diode array and mass spectrometric detection (HPLC-DAD/MS). Remarkably, all isolated compounds are specifically produced by A. novoguineensis.