Project description:The aim of present study is to identify and quantify proteins involved in the events of fertilization and early embryo development using a label-free protein quantification method in rainbow trout (Oncorhynchus mykiss) as an economically important fish species in aquaculture.
Project description:A rapid decline in temperature poses a major challenge for poikilothermic fish. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0 °C) and a control (5 °C) were compared in a microarray-based study.
Project description:The myxozoan Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD) – a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, which is often expressed by swollen kidneys. In order to understand the causes and consequences of the disease, we studied the immune response towards the parasite. To profile the influence of the disease on these cells, we produced a transcriptome of teleost RBCs in health and disease. Compared to erythrocytes originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and response to inflammation.
Project description:The objective of this study was to identify and quantify proteomic profiles of spleen of rainbow trout Oncorhynchus mykiss. Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between 9 aquaria, 18 fish per aquarium. The test groups were infected by immersion of Yersinia ruckeri strains: CSF007-82 (biotype 1) and 7959-11 (biotype 2). The control group was immersed similar with sterile broth medium. There were 3 aquaria per each group (CSF007-82-infected, 7959-11-infected and control). Nine fish from infected and control fish groups were anaesthetized with MS-222 at 3, 9 and 28 days post exposure and sampled aseptically. Each spleen was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Spleen samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:The objective of this study was to identify and quantify proteomic profiles of intestine of rainbow trout (Oncorhynchus mykiss). Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between aquaria. The test groups were infected by immersion of Yersinia ruckeri CSF007-82 (biotype 1) and 7959-11 (biotype 2) strains. The control group was immersed similar with sterile broth medium. Fish were anaesthetized and sampled aseptically at different time points. Each intestine was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Intestinal mucosa was scraped with a sterile large scalpel blade. Intestinal samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:Stocking density is considered as a key factor determining the productivity of fish aquaculture systems. The transcriptomic response to crowding stress is, however, still poorly investigated. We aimed at the identification of potential biomarker genes via microarray analyses to get insight into molecular pathways modulated through density-induced stress in farmed rainbow trout Oncorhynchus mykiss. Transcriptome profiling in liver, kidney, and gills was complemented with behaviarol observation and analysis of classical plasma parameters. Individuals of two trout strains were exposed for eight days to definite stocking densities, 1 kg/m³ (low density); 10 kg/m³ (moderate); 18 kg/m³ (elevated); and 35 kg/m³ (high). Whereas stocking density had no significant effect on cortisol levels, plasma glucose levels were elevated in trout kept at high density. Pathway enrichment analyses confirmed the upregulation of HIF1a signaling in liver contributing to glucose homeostasis during stress conditions, while mTOR and PI3K/AKT signaling pathways were downregulated. Further perturbed hepatic pathways were involved in protein ubiquitination and the biosynthesis of cholesterol, retinol and glutathione.
Project description:The objective of this study was to identify and quantify proteomic profiles of head kidney of rainbow trout Oncorhynchus mykiss. Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between 9 aquaria, 18 fish per aquarium. The test groups were infected by immersion of Yersinia ruckeri strains: CSF007-82 (biotype 1) and 7959-11 (biotype 2). The control group was immersed similar with sterile broth medium. There were 3 aquaria per each group (CSF007-82-infected, 7959-11-infected and control). Nine fish from infected and control fish groups were anaesthetized with MS-222 at 3, 9 and 28 days post exposure and sampled aseptically. Each head kidney was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Head kidney samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:Stocking density is considered as a key factor determining the productivity of fish aquaculture systems. The transcriptomic response to crowding stress is, however, still poorly investigated. We aimed at the identification of potential biomarker genes via microarray analyses to get insight into molecular pathways modulated through density-induced stress in farmed rainbow trout Oncorhynchus mykiss. Transcriptome profiling in liver, kidney, and gills was complemented with behaviarol observation and analysis of classical plasma parameters. Individuals of two trout strains were exposed for eight days to definite stocking densities, 1 kg/m³ (low density); 10 kg/m³ (moderate); 18 kg/m³ (elevated); and 35 kg/m³ (high). Whereas stocking density had no significant effect on cortisol levels, plasma glucose levels were elevated in trout kept at high density. Pathway enrichment analyses confirmed the upregulation of HIF1a signaling in liver contributing to glucose homeostasis during stress conditions, while mTOR and PI3K/AKT signaling pathways were downregulated. Further perturbed hepatic pathways were involved in protein ubiquitination and the biosynthesis of cholesterol, retinol and glutathione. Three stocking density conditions were investigated: an uncrowded âmoderateâ density (MD: 10 kg trout/m³) , an elevated density (ED: 18 kg/m³ ), and high density (HD: 35 kg/m³). The experiment was performed twice with two strains of Steelhead rainbow trout (Troutlodge and Born trout), randomly assigned to identical glass tanks with MD (30 and 34 individuals), ED (60 and 64 individuals), and HD (120 and 140 individuals). Trout were sampled 8 d after experimental onset.
Project description:Metabolic processes and sexual maturation closely interact during the long-distance reproductive migration of many fish species to their spawning grounds. In the present study, we have for the first time used exercise experimentally to investigate the effects on sexual maturation in rainbow trout. Pubertal autumn-spawning seawater-raised female rainbow trout Oncorhynchus mykiss (n=26; 50-cm, 1.5-kg) were rested or swum at a near optimal speed of 0.75 body-lengths per second in a 6,000 L swim-flume under natural reproductive conditions (16 °C fresh-water, starvation, 8h-light:16h-dark photoperiod). Fish were sampled after arrival and subsequently after 10 days (resting or swimming 307 km) and 20 days (resting or swimming 636 km). Ovarian development was significantly reduced in the swimmers. Analysis of the expression of key factors in the reproductive axis included pituitary kiss1-receptor, lh and fsh and ovarian lh-receptor, fsh-receptor, aromatase and vitellogenin-receptor (vtgr). Swimmers had lower pituitary lh and ovarian vtgr expression than resters. Furthermore, the number of late vitellogenic oocytes was lower in swimmers than in resters, probably resulting from the lower vtgr expression, and vitellogenin plasma levels were higher. Therefore, swimming exercise suppresses oocyte development possibly by inhibiting vitellogenin uptake. Transcriptomic changes that occurred in the ovary of exercised fish were investigated using a salmonid cDNA microarray platform. Protein biosynthesis and energy provision were among the sixteen functional categories that were all down-regulated in the ovary. Down-regulation of the transcriptomic response in the ovary illustrates the priority of energy reallocation and will save energy to fuel exercise. A swimming-induced ovarian developmental suppression at the start of vitellogenesis during long-term reproductive migration may be a strategy to avoid precocious muscle atrophy.