Project description:Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyles strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarrays analysis, argues for a biphasic root colonization strategy of P. indica. Our finding provides a significant advance in understanding development of biotrophic plant symbionts and suggests a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Project description:AIM: By adopting comparative transcriptomic approach, we investigated the gene expression of wood decomposing Basidiomycota fungus Phlebia radiata. Our aim was to reveal how hypoxia and lignocellulose structure affect primary metabolism and the expression of wood decomposition related genes. RESULTS: Hypoxia was a major regulator for intracellular metabolism and extracellular enzymatic degradation of wood polysaccharides by the fungus. Our results manifest how oxygen depletion affects not only over 200 genes of fungal primary metabolism but also plays central role in regulation of secreted CAZyme (carbohydrate-active enzyme) encoding genes. Based on these findings, we present a hypoxia-response mechanism in wood-decaying fungi divergent from the regulation described for Ascomycota fermenting yeasts and animal-pathogenic species of Basidiomycota.
Project description:Deadwood plays a crucial role in forest ecosystems, but we have limited information about the specific fungal taxa and extracellular lignocellulolytic enzymes that are actively involved in the decomposition process in situ. To investigate this, we studied the fungal metaproteome of twelve deadwood tree species in a replicated, eight-year experiment. Key fungi observed included genera of white-rot fungi (Basidiomycota, e.g. Armillaria, Hypholoma, Mycena, Ischnoderma, Resinicium), brown-rot fungi (Basidiomycota, e.g. Fomitopsis, Antrodia), diverse Ascomycota including xylariacous soft-rot fungi (e.g. Xylaria, Annulohypoxylon, Nemania) and various wood-associated endophytes and saprotrophs (Ascocoryne, Trichoderma, Talaromyces). These fungi used a whole range of extracellular lignocellulolytic enzymes, such as peroxidases, peroxide-producing enzymes, laccases, cellulases, glucosidases, hemicellulases (xylanases) and lytic polysaccharide monooxygenases (LPMOs). Both the fungi and enzymes were tree-specific, with specialists and generalists being distinguished by network analysis. The extracellular enzymatic system was highly redundant, with many enzyme classes of different origins present simultaneously in all decaying logs. Strong correlations were found between peroxide-producing enzymes (oxidases) and peroxidases as well as LPMOs, and between ligninolytic, cellulolytic and hemicellulolytic enzymes. The overall protein abundance of lignocellulolytic enzymes was reduced by up to -30% in gymnosperm logs compared to angiosperm logs, and gymnosperms lacked ascomycetous enzymes, which may have contributed to the lower decomposition of gymnosperm wood. In summary, we have obtained a comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in several temperate forest tree species, which can help to improve our understanding of the complex ecological processes in forest ecosystems.
2024-04-22 | PXD041962 | Pride
Project description:Phylogenomic analyses of ciliates
Project description:Cytosine methylation is a conserved base modification, but explanations for its interspecific variation remain elusive. Only through taxonomic sampling of disparate groups can unifying explanations for interspecific variation be thoroughly tested. Here we leverage phylogenetic resolution of cytosine DNA methyltransferases (DNA MTases) and genome evolution to better understand widespread interspecific variation across 40 diverse fungal species. DNA MTase genotypes have diversified from the ancestral DNMT1+DNMT5 genotype through numerous loss events, and duplications, whereas, DIM-2 and RID-1 are more recently derived in fungi. Methylation is typically enriched at intergenic regions, which includes repeats and transposons. Unlike certain Insecta and Angiosperm species, Fungi lack canonical gene body methylation. Some fungi species possess large clusters of contiguous methylation encompassing many genes, repetitive DNA and transposons, and are not ancient in origin. Broadly, methylation is partially explained by DNA MTase genotype and repetitive DNA content. Basidiomycota on average have the highest level of methylation, and repeat content, compared to other phyla. However, exceptions exist across Fungi. Other traits, including DNA repair mechanisms, might contribute to interspecific methylation variation within Fungi. Our results show mechanism and genome evolution are unifying explanations for interspecific methylation variation across Fungi.
Project description:Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyles strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarrays analysis, argues for a biphasic root colonization strategy of P. indica. Our finding provides a significant advance in understanding development of biotrophic plant symbionts and suggests a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi. P. indica (DSM 11827, DSMZ) was cultivated on complex medium agar plates or liquid medium as described before (Zuccaro et al., 2009). Barley seeds (Hordeum vulgare L. cv. Golden Promise) were surface sterilized with 3 % sodium hypochlorite, rinsed in water and pregerminated for 3 days. To address the experimental design four different treatments were done (P. indica on barley roots on 1/10 PNM medium, P. indica on autoclaved barley roots on 1/10 PNM medium, P. indica on 1/10 PNM medium and P. indica on CM medium), each in three independent biological replications. Root and fungal material was harvested in liquid nitrogen after 24, 36, 48, 72, 120 and 168 hpi. For each time point roots from 15 to 20 living plants or 21 to 36 autoclaved plants were pooled.
Project description:The genus Armillaria spp. (Fungi, Basidiomycota) includes devastating pathogens of temperate forests and saprotrophs that decay wood. Pathogenic and saprotrophic Armillaria species can efficiently colonize and decay woody substrates, however, mechanisms of wood penetration and colonization are poorly known. We assayed the colonization and decay of autoclaved spruce roots using the conifer-specialists Armillaria ostoyae and A. cepistipes using transcriptomic and proteomic data. Transcript and protein levels were altered more extensively in the saprotrophic A. cepistipes than in the pathogenic A. ostoyae and in invasive mycelia of both species compared to their rhizomorphs. Diverse suites of carbohydrate-active enzyme genes (CAZymes), in particular pectinolytic ones and expansins, were upregulated in both species, whereas ligninolytic genes were mostly downregulated. Our gene expression data, together with previous comparative genomic and decay-chemistry analyses suggest that wood decay by Armillaria differs from that of typical white rot fungi and shows features resembling soft rot. We propose that Armillaria species have modified the ancestral white rot machinery so that it allows for selective ligninolysis based on environmental conditions and/or host types.
Project description:The genus Armillaria spp. (Fungi, Basidiomycota) includes devastating pathogens of temperate forests and saprotrophs that decay wood. Pathogenic and saprotrophic Armillaria species can efficiently colonize and decay woody substrates, however, mechanisms of wood penetration and colonization are poorly known. We assayed the colonization and decay of autoclaved spruce roots using the conifer-specialists Armillaria ostoyae and A. cepistipes using transcriptomic and proteomic data. Transcript and protein levels were altered more extensively in the saprotrophic A. cepistipes than in the pathogenic A. ostoyae and in invasive mycelia of both species compared to their rhizomorphs. Diverse suites of carbohydrate-active enzyme genes (CAZymes), in particular pectinolytic ones and expansins, were upregulated in both species, whereas ligninolytic genes were mostly downregulated. Our gene expression data, together with previous comparative genomic and decay-chemistry analyses suggest that wood decay by Armillaria differs from that of typical white rot fungi and shows features resembling soft rot. We propose that Armillaria species have modified the ancestral white rot machinery so that it allows for selective ligninolysis based on environmental conditions and/or host types.