Project description:Saccharina japonica is one of the most important marine economic crops worldwide. Blue light usually plays a significant role in the lives of Saccharina that may be beneficial to the culture system. Here we applied high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of Saccharina japonica with blue light and dark exposure respectively. Comparative analysis of gene expression was conducted to understand the underlying molecular mechanisms. RNA-seq analysis yielded 70,497 non-redundant unigenes. 25,924 unigenes of them had good comparability with known gene sequences in existing species. Based on the values of RPKM, 11,660 differentially expressed unigenes were detected in expression profiles between blue light and dark exposed samples. Our results provide clues to potential genes identification in the species and lay the foundation for future functional genomics study.
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
Project description:Saccharina japonica is one of the most important marine economic crops worldwide. Blue light usually plays a significant role in the lives of Saccharina that may be beneficial to the culture system. Here we applied high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of Saccharina japonica with blue light and dark exposure respectively. Comparative analysis of gene expression was conducted to understand the underlying molecular mechanisms. RNA-seq analysis yielded 70,497 non-redundant unigenes. 25,924 unigenes of them had good comparability with known gene sequences in existing species. Based on the values of RPKM, 11,660 differentially expressed unigenes were detected in expression profiles between blue light and dark exposed samples. Our results provide clues to potential genes identification in the species and lay the foundation for future functional genomics study. mRNA expression of Saccharina japonica with 2 different treatment (sample exposed to Dark condition, and sample exposed to blue light respectively) was determined by method of RNA-Seq
Project description:Blue light (BL) is an important environmental factor that plays critical role in algae growth and development. Saccharina japonica, as a typical brown alga, showed greatly affected by BL. However, little has been known about the regulation pathway of BL response in algae. microRNAs (miRNAs) participated in great number of life process regulation and may be also involved in the BL response in plants. To identify miRNAs from S. japonica and characterize their probable roles in BL response, we sequenced and compared small RNA libraries under BL irradiation and dark conditions. 20 potential novel miRNAs were identified from S. japonica. Bioinformatics analysis of the miRNAs indicated that their potential targets were involved in various biological processes. Based on differential expression analysis and qRT-PCR experiment, some probable miRNAs related to BL responses were selected for further verification of their function, such as miR398. Our results demonstrated that miRNAs might play vital roles in metabolism of S. japonica, including BL responses.