Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:In order to evaluate the genome differences and find the more tolerant cultivar, first eleven Malaysian rice cultivars namely, MR219, MR276, MR220, MR211, MR219-4, MR253, Q50, Q74, MR159, Masuri and MR263 were subjected under water deficit. Then, based on the morphological and physiological traits, the more drought-tolerant and -susceptible cultivars were screened and time-course gene expression profiling established by a comprehensive transcriptome database sequencing of the leaf RNA of tolerant rice. The current investigation provides pivotal data for understanding the rice drought tolerance mechanisms.
Project description:Climate change is affecting the unprecedented drought scenario and frequent occurrence of pathogen infection in rice. Simultaneous occurrence of these stresses could lead to more crop loss. Transcription response of genes involved in combined stress would provide relevant candidate gene to develop climate resilient rice. We report individual drought, Xoo infection and combined stress on rice. RNA Seq of contrasting genotypes BPT5204 and TN1 has revealed many candidate genes. A meta-analysis further filtered out some candidate genes which could be used for breeding programme. Several genes identified were already characterized by other groups for individual stress condition. However the genes involved in drought and pathogen infection could be further used for genetic manipulation studies in future.
Project description:Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. The combination of constitutive and acquired traits governs drought tolerance, which is crucial for maintaining crop productivity under drought. Drought affects protein synthesis, to uncover the translational landscape with response to drought stress in rice, polysome bound mRNA sequencing at anthesis stage in resistant APO and sensitive IR64 genotypes were performed. Our results demonstrate that drought tolerant genotype maintains higher transcripts bound to poly-ribosomes which facilitate higher protien synthesis which impacted on photosynthesis, spikelet fertility, seed filing and yield under drought stress. We identified many novel LncRNAs and relevant genes associated with translation which can play important role in manitaing grain protein content with drought tolerance.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.