Project description:The severe acute respiratory syndrome (SARS) epidemic was characterized by increased pathogenicity in the elderly due to an early exacerbated innate host response. SARS-CoV is a zoonotic pathogen that entered the human population through an intermediate host like the palm civet. To prevent future introductions of zoonotic SARS-CoV strains and subsequent transmission into the human population, heterologous disease models are needed to test the efficacy of vaccines and therapeutics against both late human and zoonotic isolates. Here we show that both human and zoonotic SARS-CoV strains can infect cynomolgus macaques and resulted in radiological as well as histopathological changes similar to those seen in mild human cases. Viral replication was higher in animals infected with a late human phase isolate compared to a zoonotic isolate. Host responses to the three SARS-CoV strains were similar and only apparent early during infection with the majority of genes associated with interferon signalling pathways.This study characterizes critical disease models in the evaluation and licensure of therapeutic strategies against SARS-CoV for human use 4 strains, time course, lungs
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:To further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets. Keywords: time course This study is a simple time course (58 day) examination of host responses in 35 SARS-CoV (TOR2) infected ferrets with the addition of a challenge inoculation of SARS CoV (TOR2) at day 29 post infection. Three mock-infected ferrets are included as negative controls. Due to the unavailability of ferret microarrays, Affymetrix Canine 2.0 oligonucleotide arrays were chosen following sequence analysis of our ferret cDNA library (~5000 clones) and demonstration of high levels of homology (>80%) between dog and ferret.
Project description:The current COVID-19 pandemic is caused by the novel coronavirus SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 virus biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients often present with respiratory symptoms including cough, dyspnea, and respiratory distress but upwards of 25% of respiratory dysfunction, many COVID-19 patients have digestive system indications, including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with more severe COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of different colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple types of hESC-derived colon cells, but are highly enriched in hPSC-derivedKRT20+ enterocytes. Distinct cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which is further validated in vivo using a humanized mouse model. Finally, we adapted hPSC-derived COs to a high throughput platform to screen 1280 FDA-approved drugs. Mycophenolic acid was found to block the entry of SARS-Cov-2 pseudo-entry virus in COs, and confirmed to block infection of SARS-CoV-2 virus. In summary, this study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified a drug suitable for rapid clinical testing that blocks SARS-CoV-2 infection.
Project description:The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus’s effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways
Project description:Although tropism of SARS-CoV-2 for respiratory tract epithelial cells is well established, an open question is whether the conjunctival epithelium is also a target for SARS-CoV-2. Conjunctival epithelial cells, which express viral entry receptors ACE2 and TMPRSS2, constitute the largest exposed epithelium of the ocular surface tissue, and may represent a relevant viral entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of progenitor, basal and superficial epithelial cells and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single cell RNA-Seq, with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to SARS-CoV-2 genome expression, a productive infection did not ensure. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust NF-Kβ activity, alongside evidence of suppression of antiviral interferon signalling. Collectively these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies such as personal protective equipment.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate for RNA Triplicates are defined as 3 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2 for SARS viruses and an MOI of 1 for H1N1.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.