Project description:Nowadays, although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing and mass spectrometry technology, to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19948 genes and 2663 protein groups in single mouse oocytes.
Project description:An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. We present the generation of a protein synthesis-based database from deep sequencing of ribosome-protected mRNA fragments. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse respectively and enables proteome-wide detection of 5’-extended proteoforms, uORF translation and near-cognate translation start sites.
Project description:The long-standing view of 'immortal germ line versus mortal soma' poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal aging of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs, and would offer novel insight into the changes oocytes undergo during maternal aging. Gene ontology semantic analysis reveals the high similarity of the detected proteome (2,324 proteins) to the transcriptome (22,334 mRNAs), though not all proteins have a cognate mRNA. Concerning their dynamics, 4-fold changes of abundance are more frequent in the proteome (3%) than the transcriptome (0.05%), with correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes, spindle-assembly checkpoints) are largely represented among those that change in oocytes during maternal aging; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) are infrequent. These quantitative alterations are either impoverishing or enriching. Using gene ontology analysis, these alterations do not relate in any simple way to the classic signature of aging known from somatic tissues. We conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis, given the lack of correlation. Furthermore, we conclude that the classic features of aging may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal aging of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy. Three pools of 20 zona-enclosed B6C3F1 oocytes from each age group were subjected for experiment.
Project description:Cumulus cells are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The bi-directional communication between the oocyte and the surrounding cumulus cells is crucial for the acquisition of oocyte competence. Using Illumina/deep-sequencing technology, we dissected the small RNAome of pooled human mature MII oocytes and cumulus cells. Cumulus cells and MII mature oocytes small RNA profiles were generated by deep-sequencing, using Illumina 1G sequencer
Project description:Germ cells of most animals critically depend on piRNAs and Piwi proteins. Surprisingly, piRNAs in mouse oocytes are relatively rare and dispensable. We present compelling evidence for strong Piwi-piRNA expression in oocytes of other mammals. Human fetal oocytes express PIWIL2 and transposon-enriched piRNAs. Oocytes in adult human ovary express PIWIL1 and PIWIL2, while those in bovine ovary just express PIWIL1. In human, macaque and bovine ovaries we find piRNAs that resemble testis-borne pachytene piRNAs. Isolated bovine follicular oocytes were shown to contain abundant, relatively short piRNAs that preferentially target transposable elements. Using label-free quantitative proteome analysis we show that these maturing oocytes strongly and specifically express the thus-far uncharacterized PIWIL3 protein, alongside other known piRNA-pathway components. In bovine early embryos these piRNAs are still abundant, revealing a potential impact of piRNAs on mammalian embryogenesis. Our results reveal unexpected, highly dynamic piRNA pathways in mammalian oocytes and early embryos. Analyses of multiple small RNA libraries obtained from fetal/adult oocytes, cumulus cells, ovary, testis and 2-4 cell stage ivf embryos of multiple mammalian species.
Project description:The long-standing view of 'immortal germ line versus mortal soma' poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal aging of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs, and would offer novel insight into the changes oocytes undergo during maternal aging. Gene ontology semantic analysis reveals the high similarity of the detected proteome (2,324 proteins) to the transcriptome (22,334 mRNAs), though not all proteins have a cognate mRNA. Concerning their dynamics, 4-fold changes of abundance are more frequent in the proteome (3%) than the transcriptome (0.05%), with correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes, spindle-assembly checkpoints) are largely represented among those that change in oocytes during maternal aging; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) are infrequent. These quantitative alterations are either impoverishing or enriching. Using gene ontology analysis, these alterations do not relate in any simple way to the classic signature of aging known from somatic tissues. We conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis, given the lack of correlation. Furthermore, we conclude that the classic features of aging may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal aging of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.
Project description:Cumulus cells are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The bi-directional communication between the oocyte and the surrounding cumulus cells is crucial for the acquisition of oocyte competence. Using Illumina/deep-sequencing technology, we dissected the small RNAome of pooled human mature MII oocytes and cumulus cells.