Project description:We have employed short-capped RNA sequencing (sc-RNA-seq) in order to identify genes whose expression is regulated by promoter proximal pausing of RNA Polymerase II (RNAPI) in response to stress stimulation. We used serum-deprived mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. We isolated nuclear RNA, performed size fractionation followed by isolation of short-capped RNAs (scRNA). scRNAs were subsequently converted into DNA library and sequenced.
Project description:We have employed chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to analyze changes in chromatin architecture as well as the occupancy of two RNA Polymerase II (RNAPII) isoforms, initiation-competent (RNAPIIS5ph) as well as elongation-competent (RNAPIIS2ph) upon stress induction. We used resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. Isolated chromatin was subjected to immunoprecipitation with the following antibodies: a-H3S28ph, a-H3K9ac, a-H3K4me3, a-RNAPIIS5ph and a-RNAPIIS2ph. Resulting DNA was sequenced using Illumina platforms.
Project description:We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.
Project description:We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin for 3 or 6 hours to induce the p38/MAP kinase pathway. In order determine transcriptional effects dependent on MSK1/2 kinase activity, H89 inhibitor was used in the study. Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 3 h or 6h (in duplicates) either with or without 15-min pre-treatment with MSK1/2 inhibitor H89 (10 uM). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.
Project description:We have employed gene expression profiling in order to identify targets of transcriptional response to stress in mouse Swiss 3T3 fibroblasts, where we induced p38/MAP kinase pathway using anisomycin. Serum starved (72 h) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1, 3, and 6 h (in triplicates). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using mouse Agilent expression array (4x44k) was performed.
Project description:In order to establish a consensus catalog of dorsal rott ganglion cell types, we used comprehensive transcriptome analysis of single cells for unsupervised identification and molecular classification of sensory neurons independent of any a priori knowledge of sensory subtypes. RNA-Seq was performed on 799 dissociated single cells dissected from the mouse lumbar dorsal root ganglion distributed over a total of nine 96-well plates
Project description:Purpose: We aimed to identify miRNAs which are induced by the Activin/Nodal effectors, P-Smad2/3, in order to further our understanding of how P-Smad2/3 controls downstream gene expression in mouse ES cells to regulate crucial biological processes. Methods: We used a previously developed Tetracycline-On (Tet-On) system (TAG1) to manipulate the levels of P-Smad2/3 in mouse ES cells and performed an Illumina deep-sequencing screen to identify miRNAs which followed the P-Smad2/3 pathway. Results: We filtered the deep-seq data to identify a list of 28 miRNAs which showed a >1.25 fold increase in response to P-Smad2/3 induction and a >1.25 fold decrease in response to P-Smad2/3 repression. Conclusions: Our study represents a comprehensive global profiling of miRNA expression in response to changes in P-Smad2/3 levels in mouse ES cells. miRNA profiles of TAG1 cells which were untreated (control), SB-431541 treated (P-Smad2/3 repressed), or Dox treated (P-Smad2/3 induced), were generated using Illumina GAII.
Project description:Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for PPARg, the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We have now addressed this issue by studying the direct effects of rosiglitazone on gene transcription, using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 minutes and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (eRNAs). Upregulated eRNAs occurred almost exclusively at PPARg binding sites, to which rosi treatment recruited the coactivator MED1. By contrast, transcriptional repression by rosi involved a loss of MED1 from eRNA sites devoid of PPARg and enriched for other TFs including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of antidiabetic drugs. 3T3-L1 matuer adipocyte were treated with rosi, and nascent transcripts were measured at various time points using GRO-seq. ChIP-seq experiments for various coactivators, corepressor, and transcription factors also have been done to monitor initial occupancy or change before and after treatment.
Project description:Background: Adenosine deaminases that act on RNA (ADARs) bind to double-stranded and structured RNAs and deaminate adenosines to inosines. This A to I editing is widespread and required for normal life and development. Besides mRNAs and repetitive elements, ADARs can target miRNA precursors. Editing of miRNA precursors can affect processing efficiency and alter target specificity. Interestingly, ADARs can also influence miRNA abundance independent of RNA-editing. In mouse embryos where editing levels are low, ADAR2 was found to be the major ADAR protein that affects miRNA abundance. Here we extend our analysis to adult mouse brains where high editing levels are observed. Results: Using Illumina deep sequencing we compare the abundances of mature miRNAs and editing events within them, between wild-type and ADAR2 knockout mice in the adult mouse brain. Reproducible changes in abundance of specific miRNAs are observed in ADAR2 deficient mice. Most of these quantitative changes seem unrelated to A to I editing events. However, many A to G transitions in cDNAs prepared from mature miRNA sequences, reflecting A to I editing events in the RNA, are observed with frequencies reaching up to 80%. About half of these editing events are primarily caused by ADAR2 while a few miRNAs show increased editing in the absence of ADAR2, suggesting preferential editing by ADAR1. Moreover, novel, previously unknown editing events were identified in several miRNAs. In general 64% of all editing events are located within the seed region of mature miRNAs. In one of these cases retargeting of the edited miRNA could be verified in reporter assays. Also, altered processing efficiency upon editing near a processing site could be experimentally verified. Conclusions: ADAR2 can significantly influence the abundance of certain miRNAs in the brain. Only in a few cases changes in miRNA abundance can be explained by miRNA editing. Thus, ADAR2 binding to miRNA precursors, without editing them, may influence their processing and thereby abundance. ADAR1 and ADAR2 have both overlapping and distinct specificities for editing of miRNA editing sites. Over 60% of editing occurs in the seed region possibly changing target specificities for many edited miRNAs. Examination of the effect of ADAR2 on mature miRNA abundance and sequence in adult mouse brain.