Nutrigenomic profiling of processes affected in liver and distal intestine in response to a soybean meal-induced nutritional stress in Atlantic Salmon (Salmo salar).
Ontology highlight
ABSTRACT: The aim of the present study was to generate an experimental model to characterize the nutrigenomic profile of a plant-derived nutritional stress (S30 = 300 g Kg-1 Soybean Meal). Our results provided: a) a snapshot of molecular signatures describing a chronic and advanced nutritional stress to which future nutrigenomic studies might refer to; and b) a platform for the identification of candidate genes for the molecular phenotyping of several physiological parameters in liver and distal intestine. Atlantic salmon was used as a model. The nutritional stress was induced by inclusions of dietary defatted soybean meal (SBM) up to a level of 300 g kg-1, being this ingredient extensively demonstrated to induce reduced performance and enteropathy in the distal intestine (Baeverfjord and Krogdahl, 1996;Urán et al., 2009;URÁN et al., 2008). A control treatment with no SBM (S0) as well as intermediate levels of inclusion (100 g kg-1 and 200 g kg-1 SBM) were included to span a range of optimal and sub-optimal conditions. Performance parameters were measured and impaired growth was taken as an indicator of pronounced and chronic nutritional stress. Molecular analyses were performed in two tissues, liver and distal intestine. Distal intestine was chosen for being the site most morphologically and physiologically affected during the development of intestinal pathologies associated with plant ingredients such as SBM (Baeverfjord and Krogdahl, 1996;Kortner et al., 2011), while liver for being arguably the most metabolic active tissue. These tissues have been the most investigated targets in nutritional studies on fish so far. To the best of our knowledge, this study is the most comprehensive of its kind to report on the transcriptomic profile of the distal intestine and the liver, hence highlighting the supporting role of this tissue, in fish undergoing SBM-induced nutritional stress. Skugor et al (, 2011) described gene expression profiles of liver and intestine in fish fed 200 g kg-1 SBM inclusion using a 11K trout array. By investigating a larger number of probes (44K) in a more severe nutritional stress (300 g kg-1), our work will add further nutrigenomic information to the current literature.
INSTRUMENT(S): Axon GenePix Pro scanner
ORGANISM(S): Salmo salar
SUBMITTER: Christian De Santis
PROVIDER: E-MTAB-3291 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA