Unknown

Dataset Information

0

Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.


ABSTRACT: A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)<5ms). However, the signal was small (?F/F=0.4%/200mV). FP voltage sensors using the D. rerio voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal.

SUBMITTER: Baker BJ 

PROVIDER: S-EPMC3398169 | biostudies-literature | 2012 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.

Baker Bradley J BJ   Jin Lei L   Han Zhou Z   Cohen Lawrence B LB   Popovic Marko M   Platisa Jelena J   Pieribone Vincent V  

Journal of neuroscience methods 20120524 2


A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair  ...[more]

Similar Datasets

| S-EPMC3253140 | biostudies-literature
| S-EPMC9726753 | biostudies-literature
| S-EPMC4478964 | biostudies-literature
| S-EPMC5984684 | biostudies-literature
| S-EPMC6651345 | biostudies-literature
| S-EPMC5555402 | biostudies-literature
| S-EPMC7794770 | biostudies-literature
| S-EPMC4242678 | biostudies-literature
| S-EPMC3435330 | biostudies-literature
| S-EPMC9187629 | biostudies-literature