Unknown

Dataset Information

0

Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow.


ABSTRACT: Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.

SUBMITTER: Potekhina ES 

PROVIDER: S-EPMC7794770 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow.

Potekhina Ekaterina S ES   Bass Dina Y DY   Kelmanson Ilya V IV   Fetisova Elena S ES   Ivanenko Alexander V AV   Belousov Vsevolod V VV   Bilan Dmitry S DS  

International journal of molecular sciences 20201225 1


Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors  ...[more]

Similar Datasets

| S-EPMC3253140 | biostudies-literature
| S-EPMC9726753 | biostudies-literature
| S-EPMC5555402 | biostudies-literature
| S-EPMC8597865 | biostudies-literature
| S-EPMC9187629 | biostudies-literature
| S-EPMC4941510 | biostudies-literature
| S-EPMC9175130 | biostudies-literature
| S-EPMC6717542 | biostudies-literature
| S-EPMC4168480 | biostudies-literature
| S-EPMC2752217 | biostudies-literature