In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis.
Ontology highlight
ABSTRACT: Autoreactive B cells are essential for the pathogenesis of type 1 diabetes. The genesis and dynamics of autoreactive B cells remain unknown. In this study, we analyzed the immune response in the NOD mouse model to the neuronal protein peripherin (PRPH), a target Ag of islet-infiltrating B cells. PRPH autoreactive B cells recognized a single linear epitope of this protein, in contrast to the multiple epitope recognition commonly observed during autoreactive B cell responses. Autoantibodies to this epitope were also detected in the disease-resistant NOR and C57BL/6 strains. To specifically detect the accumulation of these B cells, we developed a novel approach, octameric peptide display, to follow the dynamics and localization of anti-PRPH B cells during disease progression. Before extended insulitis was established, anti-PRPH B cells preferentially accumulated in the peritoneum. Anti-PRPH B cells were likewise detected in C57BL/6 mice, albeit at lower frequencies. As disease unfolded in NOD mice, anti-PRPH B cells invaded the islets and increased in number at the peritoneum of diabetic but not prediabetic mice. Isotype-switched B cells were only detected in the peritoneum. Anti-PRPH B cells represent a heterogeneous population composed of both B1 and B2 subsets. In the spleen, anti-PRPH B cell were predominantly in the follicular subset. Therefore, anti-PRPH B cells represent a heterogeneous population that is generated early in life but proliferates as diabetes is established. These findings on the temporal and spatial progression of autoreactive B cells should be relevant for our understanding of B cell function in diabetes pathogenesis.
SUBMITTER: Garabatos N
PROVIDER: S-EPMC3994320 | biostudies-literature | 2014 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA