Unknown

Dataset Information

0

Patterned optogenetic modulation of neurovascular and metabolic signals.


ABSTRACT: The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling.

SUBMITTER: Richner TJ 

PROVIDER: S-EPMC4294407 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Patterned optogenetic modulation of neurovascular and metabolic signals.

Richner Thomas J TJ   Baumgartner Ryan R   Brodnick Sarah K SK   Azimipour Mehdi M   Krugner-Higby Lisa A LA   Eliceiri Kevin W KW   Williams Justin C JC   Pashaie Ramin R  

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 20141112 1


The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photosti  ...[more]

Similar Datasets

| S-EPMC4824015 | biostudies-literature
2013-11-14 | E-MTAB-1888 | biostudies-arrayexpress
| S-EPMC6282226 | biostudies-literature
| S-EPMC5390787 | biostudies-literature
| S-EPMC6187135 | biostudies-literature
| S-EPMC4820717 | biostudies-literature
| S-EPMC4412590 | biostudies-literature
| S-EPMC7039648 | biostudies-literature
| S-EPMC3174240 | biostudies-literature
| S-EPMC7051981 | biostudies-literature