Unknown

Dataset Information

0

COMP-Ang1 Potentiates EPC Treatment of Ischemic Brain Injury by Enhancing Angiogenesis Through Activating AKT-mTOR Pathway and Promoting Vascular Migration Through Activating Tie2-FAK Pathway.


ABSTRACT: Successful recovery from brain ischemia is limited due to poor vascularization surrounding the ischemic zone. Cell therapy with strong angiogenic factors could be an effective strategy to rescue the ischemic brain. We investigated whether cartilage oligomeric matrix protein (COMP)-Ang1, a soluble, stable and potent Ang1 variant, enhances the angiogenesis of human cord blood derived endothelial progenitor cells (hCB-EPCs) for rescuing brain from ischemic injury. COMP-Ang1 markedly improved the tube formation of capillaries by EPCs and incorporation of EPCs into tube formation with human umbilical vein endothelial cells (HUVECs) upon incubation on matrigel in vitro. COMP-Ang1 stimulated the migration of EPCs more than HUVECs in a scratch wound migration assay. The transplanted EPCs and COMP-Ang1 were incorporated into the blood vessels and decreased the infarct volume in the rat ischemic brain. Molecular studies revealed that COMP-Ang1 induced an interaction between Tie2 and FAK, but AKT was separated from the Tie2-FAK-AKT complex in the EPC plasma membrane. Tie2-FAK increased pp38, pSAPK/JNK, and pERK-mediated MAPK activation and interacted with integrins ???3, ?4, ?1, finally leading to migration of EPCs. AKT recruited mTOR, SDF-1, and HIF-1? to induce angiogenesis. Taken together, it is concluded that COMP-Ang1 potentiates the angiogenesis of EPCs and enhances the vascular morphogenesis indicating that combination of EPCs with COMP-Ang1 may be a potentially effective regimen for ischemic brain injury salvage therapy.

SUBMITTER: Moon HE 

PROVIDER: S-EPMC4363334 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

COMP-Ang1 Potentiates EPC Treatment of Ischemic Brain Injury by Enhancing Angiogenesis Through Activating AKT-mTOR Pathway and Promoting Vascular Migration Through Activating Tie2-FAK Pathway.

Moon Hyo Eun HE   Byun Kyunghee K   Park Hyung Woo HW   Kim Jin Hyun JH   Hur Jin J   Park Joong Shin JS   Jun Jong Kwan JK   Kim Hyo-Soo HS   Paek Seung Leal SL   Kim In Keyoung IK   Hwang Jae Ha JH   Kim Jin Wook JW   Kim Dong Gyu DG   Sung Young Chul YC   Koh Gou-Young GY   Song Chang W CW   Lee Bonghee B   Paek Sun Ha SH  

Experimental neurobiology 20150313 1


Successful recovery from brain ischemia is limited due to poor vascularization surrounding the ischemic zone. Cell therapy with strong angiogenic factors could be an effective strategy to rescue the ischemic brain. We investigated whether cartilage oligomeric matrix protein (COMP)-Ang1, a soluble, stable and potent Ang1 variant, enhances the angiogenesis of human cord blood derived endothelial progenitor cells (hCB-EPCs) for rescuing brain from ischemic injury. COMP-Ang1 markedly improved the tu  ...[more]

Similar Datasets

| S-EPMC6279518 | biostudies-literature
| S-EPMC6521018 | biostudies-literature
| S-EPMC9270420 | biostudies-literature
| S-EPMC8968763 | biostudies-literature
| S-EPMC7806979 | biostudies-literature
| S-EPMC6559753 | biostudies-literature
| S-EPMC6699794 | biostudies-literature
| S-EPMC4039113 | biostudies-literature
2022-08-12 | PXD032814 | Pride
| S-EPMC397421 | biostudies-other