Unknown

Dataset Information

0

Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.


ABSTRACT: In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all-ferrous [Fe4 S4 ](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, "density functional theory plus Poisson Boltzmann" calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all-ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes.

SUBMITTER: Tan ML 

PROVIDER: S-EPMC4815322 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.

Tan Ming-Liang ML   Perrin B Scott BS   Niu Shuqiang S   Huang Qi Q   Ichiye Toshiko T  

Protein science : a publication of the Protein Society 20150901 1


In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferre  ...[more]

Similar Datasets

| S-EPMC8395668 | biostudies-literature
| S-EPMC3970913 | biostudies-literature
| S-EPMC1965529 | biostudies-literature
| S-EPMC3891402 | biostudies-literature
| S-EPMC4905997 | biostudies-literature
| S-EPMC9038695 | biostudies-literature
| S-EPMC6747716 | biostudies-literature
| S-EPMC9462850 | biostudies-literature
| S-EPMC5675029 | biostudies-literature
2012-02-29 | E-MEXP-3459 | biostudies-arrayexpress