Unknown

Dataset Information

0

An actin-dependent annexin complex mediates plasma membrane repair in muscle.


ABSTRACT: Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5, and A6 formed a tight repair "cap." Actin was recruited to the site of damage, and annexin A6 cap formation was both actin dependent and Ca(2+) regulated. Repair proteins, including dysferlin, EHD1, EHD2, MG53, and BIN1, localized adjacent to the repair cap in a "shoulder" region enriched with phosphatidlyserine. Dye influx into muscle fibers lacking both dysferlin and the related protein myoferlin was substantially greater than control or individual null muscle fibers, underscoring the importance of shoulder-localized proteins. These data define the cap and shoulder as subdomains within the repair complex accumulating distinct and nonoverlapping components.

SUBMITTER: Demonbreun AR 

PROVIDER: S-EPMC4915191 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

An actin-dependent annexin complex mediates plasma membrane repair in muscle.

Demonbreun Alexis R AR   Quattrocelli Mattia M   Barefield David Y DY   Allen Madison V MV   Swanson Kaitlin E KE   McNally Elizabeth M EM  

The Journal of cell biology 20160613 6


Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5,  ...[more]

Similar Datasets

| S-EPMC10241516 | biostudies-literature
| S-EPMC7565960 | biostudies-literature
| S-EPMC4101652 | biostudies-literature
| S-EPMC4555831 | biostudies-literature
| S-EPMC6491720 | biostudies-literature
| S-EPMC6819108 | biostudies-literature
| S-EPMC4915190 | biostudies-literature
| S-EPMC2719360 | biostudies-literature
| S-EPMC4376448 | biostudies-literature
| S-EPMC9431694 | biostudies-literature