Heme deficiency of soluble guanylate cyclase induces gastroparesis.
Ontology highlight
ABSTRACT: Soluble guanylate cyclase (sGC) is the principal target of nitric oxide (NO) to control gastrointestinal motility. The consequence on nitrergic signaling and gut motility of inducing a heme-free status of sGC, as induced by oxidative stress, was investigated.sGC?1 (H105F) knock-in (apo-sGC) mice, which express heme-free sGC that has basal activity, but cannot be stimulated by NO, were generated.Diethylenetriamine NONOate did not increase sGC activity in gastrointestinal tissue of apo-sGC mice. Exogenous NO did not induce relaxation in fundic, jejunal and colonic strips, and pyloric rings of apo-sGC mice. The stomach was enlarged in apo-sGC mice with hypertrophy of the muscularis externa of the fundus and pylorus. In addition, gastric emptying and intestinal transit were delayed and whole-gut transit time was increased in the apo-sGC mice, while distal colonic transit time was maintained. The nitrergic relaxant responses to electrical field stimulation at 1-4 Hz were abolished in fundic and jejunal strips from apo-sGC mice, but in pyloric rings and colonic strips, only the response at 1 Hz was abolished, indicating the contribution of other transmitters than NO.The results indicate that the gastrointestinal consequences of switching from a native sGC to a heme-free sGC, which cannot be stimulated by NO, are most pronounced at the level of the stomach establishing a pivotal role of the activation of sGC by NO in normal gastric functioning. In addition, delayed intestinal transit was observed, indicating that nitrergic activation of sGC also plays a role in the lower gastrointestinal tract.
SUBMITTER: Cosyns SM
PROVIDER: S-EPMC4932850 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA