Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles.
Ontology highlight
ABSTRACT: The desymmetrization of meso-compounds is a useful synthetic method, as illustrated by numerous applications of this strategy in natural product synthesis. Cu-catalyzed allylic desymmetrizations enable the enantioselective formation of carbon-carbon bonds, but these transformations are limited in substrate scope and by the use of highly reactive premade organometallic reagents at cryogenic temperatures. Here we show that diverse meso-bisphosphates in combination with alkylzirconium nucleophiles undergo highly regio-, diastereo- and enantio-selective Cu-catalyzed desymmetrization reactions. In addition, C2-symmetric chiral bisphosphates undergo stereospecific reactions and a racemic substrate undergoes a Cu-catalyzed kinetic resolution. The reaction tolerates functional groups incompatible with many common organometallic reagents and provides access to a broad range of functionalized carbo- and hetero-cyclic structures. The products bear up to three contiguous stereogenic centers, including quaternary centers and spirocyclic ring systems. We anticipate that the method will be a useful complement to existing catalytic enantioselective reactions.
SUBMITTER: Jacques R
PROVIDER: S-EPMC6318275 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA