Unknown

Dataset Information

0

Anticancer potency of nitric oxide-releasing liposomes.


ABSTRACT: In this study, fast and slow nitric oxide (NO)-releasing liposomes (half-lives of 2.5 and >72 h, respectively) were prepared by encapsulation of N-propyl-1,3-propanediamine/NO (PAPA/NO) and diethylenetriamine/NO (DETA/NO), respectively, via reverse phase evaporation. The anticancer activity of the otherwise equivalent fast and slow NO-releasing systems was evaluated against several distinct pancreatic, colorectal, and breast cancer cell lines. The anticancer assays (via cytotoxicity) over 72 h revealed that the slower NO-releasing liposomes consistently required lower NO payloads (LD50 <3 ?g/mL) relative to the fast NO-release system (LD50 >6 ?g/mL) to elicit cytotoxicity. The mechanism of intracellular NO build-up in cancer cells was studied using confocal fluorescence microscopy and flow cytometry, the results of which indicated that a more gradual NO accumulation was characteristic of the slow NO-release system. Protein expression via Western blot analysis revealed that slower NO release resulted in more necrotic/apoptotic cells, while faster release reduced the number of mitotic cells to a greater extent. Overall, these studies demonstrate the potential of NO-releasing liposomes for anticancer therapy and highlight the significance of release kinetics (and NO payloads) required to induce cell death.

SUBMITTER: Suchyta DJ 

PROVIDER: S-EPMC6366668 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anticancer potency of nitric oxide-releasing liposomes.

Suchyta Dakota J DJ   Schoenfisch Mark H MH  

RSC advances 20171120 84


In this study, fast and slow nitric oxide (NO)-releasing liposomes (half-lives of 2.5 and >72 h, respectively) were prepared by encapsulation of N-propyl-1,3-propanediamine/NO (PAPA/NO) and diethylenetriamine/NO (DETA/NO), respectively, via reverse phase evaporation. The anticancer activity of the otherwise equivalent fast and slow NO-releasing systems was evaluated against several distinct pancreatic, colorectal, and breast cancer cell lines. The anticancer assays (via cytotoxicity) over 72 h r  ...[more]

Similar Datasets

| S-EPMC6251458 | biostudies-other
| S-EPMC6790977 | biostudies-literature
| S-EPMC6759059 | biostudies-literature
| S-EPMC4109794 | biostudies-literature
| S-EPMC3045468 | biostudies-literature
| S-EPMC7164781 | biostudies-literature
2007-12-31 | GSE5400 | GEO
2010-06-30 | E-GEOD-5400 | biostudies-arrayexpress
| S-EPMC3482834 | biostudies-literature
| S-EPMC7164775 | biostudies-literature