Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong exposure periods.
Ontology highlight
ABSTRACT: Steel structures significantly degrades owing to corrosion especially in coastal and industrial areas where significant amounts of aggressive ions are present. Therefore, anodic metals such as Al and Zn are used to protect steel. In the present study, we provide insights for the corrosion mechanism and kinetics of Al-Zn pseudo alloy coating deposited on mild steel plate via an arc thermal spraying process in 3.5 wt.% NaCl solution in terms of its improved corrosion resistance properties at prolonged exposure durations. Electrochemical studies including open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) on the deposited coating at longer exposure durations revealed enhanced corrosion resistance properties while the morphology of corrosion products through field emission-scanning electron microscopy (FE-SEM) indicated their compactness and adherence. Furthermore, atomic force microscopy (AFM) confirmed reduced roughness when compared with that of unexposed coating. Additionally, X-ray diffraction (XRD) and Raman spectroscopy results confirmed the formation of protective, adherent, and sparingly soluble Simonkolleite (Zn5(OH)8Cl2.H2O) after 55 d of exposure in 3.5 wt.% NaCl solution. A schematic is proposed that explains the corrosion process of Al-Zn pseudo alloy coating in 3.5 wt.% NaCl solution from the deposition of coating and initiation of corrosion to longer exposure durations.
SUBMITTER: Lee HS
PROVIDER: S-EPMC6399354 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA