Unknown

Dataset Information

0

Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells.


ABSTRACT: Biotin receptors are overexpressed by various types of solid cancer cells and play a significant role in tumor metabolism, growth, and metastasis. Thus, targeting the biotin receptors on tumor cells may enhance the efficiency and reduce the side-effects of chemotherapy. The aim of this study was to develop a biotin-coupled poly(amido)amine (PAMAM) (PG4.5) dendrimer nanoparticle to enhance the tumor-specific delivery and intracellular uptake of anticancer drugs via receptor-mediated endocytosis. We modified PG4.5 with diethylenetriamine (DETA) followed by biotin via an amide bond and characterized the resulting PG4.5-DETA-biotin nanoparticles by 1H NMR, FTIR, and Raman spectroscopy. Loading and releasing of gemcitabine (GEM) from PG4.5-DETA-biotin were evaluated by UV-Visible spectrophotometry. Cell viability and cellular uptake were examined by MTT assay and flow cytometry to assess the biocompatibility, cellular internalization efficiency and antiproliferative activity of PG4.5-DETA-biotin/GEM. Gemcitabine-loaded PG4.5-DETA-biotin nanoparticles were spherical with a particle size of 81.6 ± 6.08 nm and zeta potential of 0.47 ± 1.25 mV. Maximum drug-loading content and encapsulation efficiency were 10.84 ± 0.16% and 47.01 ± 0.71%, respectively. Nearly 60.54 ± 1.99% and 73.96 ± 1.14% of gemcitabine was released from PG4.5-DETA-biotin/GEM nanoparticles after 48 h at the acidic pH values of 6.5 and 5, respectively. Flow cytometry and fluorescence microscopy of cellular uptake results revealed PG4.5-DETA-biotin/GEM nanoparticles selectively targeted cancer cells in vitro. Cytotoxicity assays demonstrated gemcitabine-loaded PG4.5-DETA-biotin significantly reduced cell viability and induced apoptosis in HeLa cells. Thus, biotin-coupled PG4.5-DETA nanocarrier could provide an effective, targeted drug delivery system and selectively convey gemcitabine into tumor cells.

SUBMITTER: Hanurry EY 

PROVIDER: S-EPMC7284937 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8657743 | biostudies-literature
| S-EPMC4631223 | biostudies-literature
| S-EPMC8329424 | biostudies-literature
| S-EPMC3501731 | biostudies-literature
| S-EPMC5928494 | biostudies-literature
| S-EPMC6432117 | biostudies-literature
| S-EPMC4076006 | biostudies-other
| S-EPMC3047462 | biostudies-literature
| S-EPMC8008946 | biostudies-literature
| S-EPMC3486433 | biostudies-literature