Unknown

Dataset Information

0

Nanoscale Terahertz Monitoring on Multiphase Dynamic Assembly of Nanoparticles under Aqueous Environment.


ABSTRACT: Probing the kinetic evolution of nanoparticle (NP) growth in liquids is essential for understanding complex nano-phases and their corresponding functions. Terahertz (THz) sensing, an emerging technology for next-generation laser photonics, has been developed with unique photonic features, including label-free, non-destructive, and molecular-specific spectral characteristics. Recently, metasurface-based sensing platforms have helped trace biomolecules by overcoming low THz absorption cross-sectional limits. However, the direct probing of THz signals in aqueous environments remains difficult. Here, the authors report that vertically aligned nanogap-hybridized metasurfaces can efficiently trap traveling NPs in the sensing region, thus enabling us to monitor the real-time kinetic evolution of NP assemblies in liquids. The THz photonics approach, together with an electric tweezing technique via spatially matching optical hotspots to particle trapping sites with a nanoscale spatial resolution, is highly promising for underwater THz analysis, forging a route toward unraveling the physicochemical events of nature within an ultra-broadband wavelength regime.

SUBMITTER: Yu ES 

PROVIDER: S-EPMC8188200 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3888457 | biostudies-other
| S-EPMC7588651 | biostudies-literature
| S-EPMC4804238 | biostudies-other
| S-EPMC9272373 | biostudies-literature
| S-EPMC4908425 | biostudies-literature
| S-EPMC7482251 | biostudies-literature
| S-EPMC6990419 | biostudies-literature
| S-EPMC4451688 | biostudies-other
| S-EPMC9124215 | biostudies-literature
| S-EPMC5424710 | biostudies-literature