Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age is perturbed. Heterochronic parabiosis and recovery from this procedure is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Heterochronic parabiosis and recovery from this procedure is one such example.
Project description:Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. We characterized several models in which biological age, assessed primarily through analysis of DNA methylation, undergoes reversible changes. Heterochronic parabiosis is one such example.