Project description:In order to fully characterize emodin's effects on macrophage alternative activation, peritoneal macrophages were stimulated with IL4 with or without emodin and gene expression was analyzed using a whole genome microarray. Emodin significantly attenuated the IL4 induced changes in a large percentage of genes (60%) through inhibiting multiple signaling pathways. RT-qPCR was used to confirm the results in several genes associated with M2 macrophage activation including: Arg1, Chi3l3, and CD206.
Project description:In order to fully characterize emodin's effects on macrophage alternative activation, peritoneal macrophages were stimulated with IL4 with or without emodin and gene expression was analyzed using a whole genome microarray. Emodin significantly attenuated the IL4 induced changes in a large percentage of genes (60%) through inhibiting multiple signaling pathways. RT-qPCR was used to confirm the results in several genes associated with M2 macrophage activation including: Arg1, Chi3l3, and CD206. Three-condition, one-color experiment: Vehicle control, IL4 or IL4-Emodin treated periferal WBC PMN samples: 4 biological replicates each.
Project description:In order to fully characterize emodin's effects on macrophage activation, peritoneal macrophages were stimulated with LPS+IFNg with or without emodin and gene expression was analyzed using a whole genome microarray. Emodin significantly attenuated the IFNg/LPS induced changes in a large percentage of responsive genes (31%) through inhibiting multiple signaling pathways. RT-qPCR was used to confirm the results in several genes associated with M1 macrophage activation including: TNF, IL6, IL1b, iNOS, MMP2, and MMP9.
Project description:In order to fully characterize emodin's effects on macrophage activation, peritoneal macrophages were stimulated with LPS+IFNg with or without emodin and gene expression was analyzed using a whole genome microarray. Emodin significantly attenuated the IFNg/LPS induced changes in a large percentage of responsive genes (31%) through inhibiting multiple signaling pathways. RT-qPCR was used to confirm the results in several genes associated with M1 macrophage activation including: TNF, IL6, IL1b, iNOS, MMP2, and MMP9. Three-condition, one-color experiment: Vehicle control, LPS-IFNg or LPS-IFNg-Emodin treated periferal WBC PMN samples: 4 biological replicates each.