Project description:This experiment aims to profile polyclonal antibody binding profiles in serum from vaccinated animals relative to antibody function in a virus neutralization assay. Rabbits received three vaccinations with a DNA vaccine encoding the spike protein of the SARS-CoV-2 index strain. Serum samples were selected based on a three-tier (low, intermediate, and high) capacity to cross-neutralize SARS-CoV-2 strains with known neutralization resistance. Following normalization of total anti-spike IgG levels, serum of each animal (n=3) were evaluated for antibody binding to 10mer cyclic constrained peptides spanning the entire spike protein and regions with known SARS-CoV-2 variant of concern spike mutations.
Project description:Human cardiac pericytes express the receptors for SARS-CoV-2 and contribute to microvascular dysfunction in COVID-19 patients. The SARS-CoV-2 capsid Spike protein seems to play a direct role in COVID-19 microangiopathy, but it is not known yet whether the Spike protein alone, without the infectious virus, can induce transcriptional alterations in pericytes. This study investigated the signalling pathways activated by the Spike protein in cultured human cardiac pericytes. We found that 309 RNA transcripts were significantly modulated in pericytes exposed to the Spike protein, with the upregulation of pathways linked to inflammation and viral infection.
Project description:We here identified that the trimeric spike protein of SARS-CoV-2 could bind to TLR4 directly and robustly activate downstream signaling in monocytes and neutrophils. Moreover, specific TLR4 or NFKB inhibitor, or knockout of MyD88 could significantly block IL-1B induction by spike protein. We thus reveal that spike protein of SARS-CoV-2 functions as a potent stimulus causing TLR4 activation and sepsis related abnormal responses.
Project description:The global pandemic of severe acute pneumonia syndrome (COVID-19) caused by SARS-CoV-2 urgently calls for prevention and intervention strategies. The densely glycosylated spike (S) protein highly exposed on the viral surface is a determinant for virus binding and invasion into host cells as well as elicitation of a protective host immune response. Herein, we characterized the site-specific N-glycosylation of SARS-CoV-2 S protein using stepped collision energy (SCE) mass spectrometry (MS). Following digestion with two complementary proteases to cover all potential N-glycosylation sequons and integrated N-glycoproteomics analysis, we revealed the N-glycosylation profile of SARS-CoV-2 S proteins at the levels of intact N-glycopeptides and glycosites, along with the glycan composition and site-specific number of glycans. All 22 potential canonical N-glycosites were identified in S protein protomer. Of those, 18 N-glycosites were conserved between SARS-CoV and SARS-CoV-2 S proteins. Nearly all glycosites were preserved among the 753 SARS-CoV-2 genome sequences available in the public influenza database Global Initiative on Sharing All Influenza Data. By comparison, insect cell-expressed SARS-CoV-2 S protein contained 38 N-glycans, which were primarily assigned to the high-mannose type N-glycans, whereas the human cell-produced protein possessed up to 140 N-glycans largely belonging to the complex type. In particular, two N-glycosites located in the structurally exposed receptor-binding domain of S protein exhibited a relatively conserved N-glycan composition in human cells. This N-glycosylation profiling and determination of differences between distinct expression systems could shed light on the infection mechanism and promote development of vaccines and targeted drugs.
Project description:Despite the clinical success of anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines by rapidly spreading SARS-CoV-2 variants has been compromised. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host’s immune response and attenuate antibody efficiency. However, it still remains unclear whether targeting glycosylation on spike can impair SARS-CoV-2 and its variants infectivity. Methods: To assess the binding ability of glycosylated or deglycosylated spike with ACE2, we performed flow cytometry, ELISA, and BioLayer Interferometry methods. Viral entry ability was determined by luciferase intensity, immunoblotting, and immunofluorescence assay. A genome-wide association study (GWAS) was performed to identify the relationship of STT3A and COVID-19 severity. N-glycosylation regulated by NF-kB/STT3A axis was investigated by knockdown approach, chromatin immunoprecipitation, and promoter assay. To specifically target SARS-CoV-2 infected cells, we developed an antibody-drug conjugate coupling non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) on inhibitory effects of SARS-CoV-2 infection. Results: We found receptor binding domain and three SARS-CoV-2 distinct surface Nglycosylation sites in 57,311 spikes retrieved from NCBI-Virus-database are highly evolutionarily conserved (99.67%) and involved in ACE2 interaction. We further identified STT3A as a key glycosyltransferase that catalyzed spike glycosylation and positively correlated with COVID-19 severity. Inhibition of STT3A by N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 and its variants (B.1.1.7, and B.1.351) infectivity. Most importantly, 4G10-ADC internalized SARS-CoV-2 infected cells and subsequently released NGI-1 to deglycosylate spike protein. Thereby, it reinforces the neutralizing abilities in antibodies, vaccines, or convalescent sera, inhibiting SARS-CoV-2 and its variants’ infectivity. Our results suggest targeting STT3A-mediated evolution conserved glycosylation via ADC can provide a widespread impact on SARS-CoV-2 variants infection. Together, we identified a novel deglycosylation method to eradicate SARS-CoV-2 variants infection.
Project description:Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing transmission of SARS-CoV-2. We found that a single intranasal dose of serotype 5-based adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) secretory and serum anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and in respiratory secretions, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of wild-type mice from a challenge with the SARS-CoV-2 beta variant. Our data confirm and extend previous studies reporting promising preclinical results on vector-based intranasal SARS-CoV-2 vaccination, and support the potential of this approach to elicit mucosal immunity for preventing reinfection and transmission of SARS-CoV-2 more effectively than the currently available vaccines.
Project description:The SARS-CoV-2 Delta variant is more contagious than WT and causes severe symptoms.To understand the elevated fusogenicity of Delta, we used LC-MS/MS to characterize the site specific N-linked glycan of spike protein in SARS-CoV-2 Delta variant virions.The glycan analysis revealed increased oligomannose-type glycosylation of native Delta spike over that of the Wuhan-Hu-1 spike.
Project description:A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
https://doi.org/10.1101/2021.03.08.433764
This folder contains the RAW MS files used in the glycopeptide analysis for recombinant SARS proteins from a range of different labs outlined in Figure 1 and 2 and additionally the analysis performed on monomeric RBD
Project description:In this work, we performed a fully descriptive analysis N- and O- linked glycosylation of SARS-COV-2 S glycoprotein. We investigated that dual-functionalized Ti-IMAC material enable the simultaneous enrichment and separation of neutral and sialyl glycopeptides of a recombinant SARS-CoV-2 S glycoprotein from HEK293, which will eliminate the signal suppression of neutral glycopeptides to sialyl glycopeptides and improve the glycoform coverage of S protein. We have profiled 19 of its 22 potential N-glycosylated sites with 398 unique glycoforms in dual-functional Ti-IMIAC approach that is 1.6-fold of that in conventional HILIC method. We also identified O-linked glycosylation site that was not found in dual-functional Ti-IMIAC approach. In addition, we have also identified mannose-6-phosphate (M6P) glycosylation, which substantially expands the current knowledge of the spike protein’s glycosylation and enables the investigation of the influence of mannose-6-Phosphate on its cell entry.
Project description:The densely glycosylated spike (S) proteins that are highly exposed on the surface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate viral attachment, entry, and membrane fusion. We have previously reported all the 22 N-glycosites and site-specific N-glycans in the S protein protomer. Herein, we report the comprehensive site-specific O-glycosylation landscapes of SARS-CoV-2 S proteins, which were characterized using high-resolution mass spectrometry. Following digestion using trypsin and trypsin/Glu-C, and de-N-glycosylation using PNGase F, we determined the mucin-type (GalNAc-type) O-glycosylation pattern of S proteins, including O-glycosites and the 6 most common O-glycans occupying them, via Byonic identification and manual validation. Finally, 43 O-glycosites were identified by higher energy collision-induced dissociation (HCD), and 11 O-glycosites were verified by electron transfer/higher energy collision-induced dissociation (EThcD) in the insect cell-expressed S protein. Most glycosites were modified by non-sialylated O-glycans such as HexNAc(1) and HexNAc(1)Hex(1). In contrast, 30 O-glycosites were identified by HCD, and 14 O-glycosites were verified by EThcD in the human cell-expressed S protein S1 subunit. Most glycosites were modified by sialylated O-glycans such as HexNAc(1)Hex(1)NeuAc(1) and HexNAc(1)Hex(1)NeuAc(2). Our results are the first to reveal that the SARS-CoV-2 S protein is a mucin-type glycoprotein; clustered O-glycans often occur in the N- and the C-termini of the S protein, and the O-glycosite and O-glycan compositions vary with the host cell type. These site-specific O-glycosylation landscapes of the SARS-CoV-2 S protein are expected to provide novel insights into the viral binding mechanism and present a strategy for the development of vaccines and targeted drugs.