Project description:The submitted files contain ChIP-seq data for the p300 transcriptional coactivator in GM12878 cells and for the NRSF transcription factor in GM12878 and Jurkat cells generated using a fully automated robotic chromatin immunoprecipitation protocol. Cells were fixed using 1% formaldehyde (NRSF samples) or 1% formaldehyde at 37C (p300 samples).
Project description:When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms.
Project description:Setup and optimisation of a high throughput pipeline for ChIPseq. The protocol used is ChIP carried out using the Agilent Bravo robot with subsequent Ilumina sequencing library preparation.This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:The use of capillary electrophoresis with fluorescently labeled nucleic acids revolutionized DNA sequencing, effectively fueling the genomic revolution. We present an application of this technology for the high-throughput structural analysis of nucleic acids by chemical and enzymatic mapping ('footprinting'). We achieve the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms. We implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software that is downloadable gratis from https://simtk.org/home/cafa. The accuracy, throughput and reproducibility of CAFA analysis are demonstrated using hydroxyl radical footprinting of RNA. The versatility of CAFA is illustrated by dimethyl sulfate mapping of RNA secondary structure and DNase I mapping of a protein binding to a specific sequence of DNA. Our experimental and computational approach facilitates the acquisition of high-throughput chemical probing data for solution structural analysis of nucleic acids.
Project description:We introduce a method for assigning names to CO1 metabarcode sequences with confidence scores in a rapid, high-throughput manner. We compiled nearly 1 million CO1 barcode sequences appropriate for classifying arthropods and chordates. Compared to our previous Insecta classifier, the current classifier has more than three times the taxonomic coverage, including outgroups, and is based on almost five times as many reference sequences. Unlike other popular rDNA metabarcoding markers, we show that classification performance is similar across the length of the CO1 barcoding region. We show that the RDP classifier can make taxonomic assignments about 19 times faster than the popular top BLAST hit method and reduce the false positive rate from nearly 100% to 34%. This is especially important in large-scale biodiversity and biomonitoring studies where datasets can become very large and the taxonomic assignment problem is not trivial. We also show that reference databases are becoming more representative of current species diversity but that gaps still exist. We suggest that it would benefit the field as a whole if all investigators involved in metabarocoding studies, through collaborations with taxonomic experts, also planned to barcode representatives of their local biota as a part of their projects.
Project description:The yeast Saccharomyces cerevisiae is a model organism for replicative aging studies; however, conventional lifespan measurement platforms have several limitations. Here, we present a microfluidics platform that facilitates simultaneous lifespan and gene expression measurements of aging yeast cells. Our multiplexed high-throughput platform offers the capability to perform independent lifespan experiments using different yeast strains or growth media. Using this platform in minimal media environments containing glucose, we measured the full lifespan of individual yeast cells in wild-type and canonical gene deletion backgrounds. Compared to glucose, in galactose we observed a 16.8% decrease in replicative lifespan accompanied by an ∼2-fold increase in single-cell oxidative stress levels reported by PSOD1-mCherry. Using PGAL1-YFP to measure the activity of the bistable galactose network, we saw that OFF and ON cells are similar in their lifespan. Our work shows that aging cells are committed to a single phenotypic state throughout their lifespan.
Project description:Recent advances in stem cell technology have led to the development of three-dimensional (3D) culture systems called organoids, which have fueled hopes to bring about the next generation of more physiologically relevant high throughput screens (HTS). However, the adaptation of established organoid protocols for HTS applications has so far been elusive. Here, we present a fully scalable, HTS-compatible workflow for the automated generation, maintenance, whole mount staining, clearing, and optical analysis of human neural organoids generated from neural precursor cells in a standard 96-well format. By combining organoid generation and analysis steps in an automated fashion, we can perform quantitative whole-organoid high content imaging with single cell resolution. The resulting organoids are highly homogeneous with regard to their morphology, size, global gene expression, cellular composition, and structure. Calcium imaging suggests organoid-wide synchronized functional coupling. The scalability of our approach has the potential to form the basis for 3D tissue-based screening in a variety of applications including drug development, toxicology studies, and disease modeling.
Project description:Autophagic processes play a central role in cellular homeostasis. In pathological conditions, the flow of autophagy can be affected at multiple and distinct steps of the pathway. Current analyses tools do not deliver the required detail for dissecting pathway intermediates. The development of new tools to analyze autophagic processes qualitatively and quantitatively in a more straightforward manner is required. Defining all autophagy pathway intermediates in a high-throughput manner is technologically challenging and has not been addressed yet. Here, we overcome those requirements and limitations by the developed of stable autophagy and mitophagy reporter-iPSC and the establishment of a novel high-throughput phenotyping platform utilizing automated high-content image analysis to assess autophagy and mitophagy pathway intermediates.
Project description:Circulating tumor cells (CTCs) have the potential of becoming the gold standard marker for cancer diagnosis, prognosis and monitoring. However, current methods for its isolation and characterization suffer from equipment variability and human operator error that hinder its widespread use. Here we report the design and construction of a fully automated high-throughput fluorescence microscope that enables the imaging and classification of cancer cells that were labeled by immunostaining procedures. An excellent agreement between our machine vision-based approach and a state-of-the-art microscopy equipment was achieved. Our integral approach provides a path for operator-free and robust analysis of cancer cells as a standard clinical practice.
Project description:Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis.