Project description:Striking changes in protein and RNA synthesis were shown to accompany development in the slime mould Dictyostelium discoideum. These changes are, at least in part, directly attributable to control at the level of transcription. Analysis of nuclear proteins and their states of phosphorylation by two-dimensional gel electrophoresis and autoradiography showed only minor changes in the species of proteins detectable by Coomassie Blue staining during the vegetative growth and development phases. Major changes, however, were detected in their patterns of phosphorylation, with major differences from the vegetative pattern occurring during both early development (0-2h) and late development (8-12h). These changes coincide with major changes in polypeptide synthesis and in nuclear and cytoplasmic RNA complexity.
Project description:Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure-a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions.
Project description:More than a thousand proteins are thought to contribute to mammalian chromatin and its regulation, but our understanding of the genomic occupancy and function of most of these proteins is limited. Here we describe an approach, which we call "chromatin proteomic profiling," to identify proteins associated with genomic regions marked by specifically modified histones. We used ChIP-MS to identify proteins associated with genomic regions marked by histones modified at specific lysine residues, including H3K27ac, H3K4me3, H3K79me2, H3K36me3, H3K9me3, and H4K20me3, in ES cells. We identified 332 known and 114 novel proteins associated with these histone-marked genomic segments. Many of the novel candidates have been implicated in various diseases, and their chromatin association may provide clues to disease mechanisms. More than 100 histone modifications have been described, so similar chromatin proteomic profiling studies should prove to be valuable for identifying many additional chromatin-associated proteins in a broad spectrum of cell types.
Project description:The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.
Project description:Some newly translated proteins are more susceptible to misfolding and aggregation upon heat shock in comparison to other proteins. To study these newly translated thermo-sensitive proteins on a proteomic scale, we present here a protocol that combines pulse-SILAC with biochemical fractionation for mass spectrometry analysis, followed by an orthogonal validation protocol for selected candidates using the GAL promoter system in Saccharomyces cerevisiae. This approach can be further developed to study other stresses and specific post-translational modifications or adapted to mammalian cells. For complete details on the use and execution of this protocol, please refer to Zhu et al. (2022).1.
Project description:Chromatin-associated nonhistone proteins (CHRAPs) are readily collected from the DNaseI digested crude chromatin preparation. In this study, we show that the absolute abundance-based label-free quantitative proteomic analysis fail to identify potential CHRAPs from the CHRAP-prep. This is because that the most-highly abundant cytoplasmic proteins such as ribosomal proteins are not effectively depleted in the CHRAP-prep. Ribosomal proteins remain the top-ranked abundant proteins in the CHRAP-prep. On the other hand, we show that relative abundance-based SILAC-mediated quantitative proteomic analysis is capable of discovering the potential CHRAPs in the CHRAP-prep when compared to the whole-cell-extract. Ribosomal proteins are depleted from the top SILAC ratio-ranked proteins. In contrast, nucleus-localized proteins or potential CHRAPs are enriched in the top SILAC-ranked proteins. Consistent with this, gene-ontology analysis indicates that CHRAP-associated functions such as transcription, regulation of chromatin structures, and DNA replication and repair are significantly overrepresented in the top SILAC-ranked proteins. Some of the novel CHRAPs are confirmed using the traditional method. Notably, phenotypic assessment reveals that the top SILAC-ranked proteins exhibit the high likelihood of requirement for growth fitness under DNA damage stress. Taken together, our results indicate that the SILAC-mediated proteomic approach is capable of determining CHRAPs without prior knowledge.
Project description:Non-histone proteins from rat liver nuclei and chromatin were shown to be hydrolysed in 0.1M or-1M-NaOH solutions both at 4 degrees and 18 degrees C; 24h in 1M-NaOH at 18 degrees C is sufficient to break down approx. 77% of these proteins to low-molecular-weight peptides. Loss of protein material banding in the region of pH5.5-8.0 has been demonstrated by isoelectric focusing in polyacrylamide gels, and fine high-molecular-weight bands are no longer visible on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The results indicate that care must be taken when analysing non-histone-protein fractions to avoid exposure to alkaline pH conditions.
Project description:Studies are presented on the influence of polyamines on prostatic chromatin- and non-histone-protein-associated protein kinase reactions involving both exogenous and endogenous substrates. The activities toward the model acidic protein substrate, dephosphophosvitin, were maximal at 160--200mM-NaCl (or -KCl or -NH4Cl). Under these conditions, spermidine and spermine added in concentrations up to 2mM were essentially without effect. However, without addition of NaCl to the medium, marked stimulation of these reactions was elicited by these polyamines at 1--2mM concentrations. The stimulatory effects were not due to non-specific changes in the ionic strength or to substitution of spermine for Mg2+, as maximal stimulation by 1 mM-spermine was observed only at optimal (2--4mM) Mg2+ concentrations. Qualitatively similar effects of polyamines were observed with enzyme preparations from the prostates of castrated rats, and with chromatin and non-histone-protein preparations from other tissues besides ventral prostate. When phosphorylation of endogenous non-histone proteins of the chromatin was measured, spermine stimulated both the initial rates and the final extent of transphosphorylation, even in the presence of optimal concentration of NaCl. By contrast, spermine or spermidine had no effect on the chromatin- and non-histone-protein-associated protein kinase reactions determined with lysine-rich histones as substrates. Chemically NN-dimethylated dephosphophosvitin was a less active substrate for the chromatin-associated protein kinase, but its phosphorylation was more markedly stimulated by spermine in comparison with unmodified dephosphophosvitin. These observations hint that the polyamine stimulations of the various protein kinase reactions may be due to effects on the conformations of the non-histone protein substrates rather than on the kinases themselves.
Project description:Genome-wide mapping of three dimensional chromatin organization is an important yet technically challenging task. To aid experimental effort and to understand the determinants of long-range chromatin interactions, we have developed a computational model integrating Hi-C and histone mark ChIP-seq data to predict two important features of chromatin organization: chromatin interaction hubs and topologically associated domain (TAD) boundaries. Our model accurately and robustly predicts these features across datasets and cell types. Cell-type specific histone mark information is required for prediction of chromatin interaction hubs but not for TAD boundaries. Our predictions provide a useful guide for the exploration of chromatin organization.