Proteomics

Dataset Information

0

Click Chemistry-based Thiol Redox Proteomics Reveals Significant Cysteine Reduction Induced by Chronic Ethanol Consumption


ABSTRACT: In the U.S., alcohol-associated liver disease (ALD) impacts millions of people and is a major healthcare burden. While the pathology of ALD is unmistakable, the molecular mechanisms underlying ethanol hepatotoxicity are not fully understood. Hepatic ethanol metabolism is intimately linked with alterations in extracellular and intracellular metabolic processes, specifically oxidation/reduction reactions. The xenobiotic detoxification of ethanol leads to significant disruptions in glycolysis, β-oxidation, and the TCA cycle, as well as oxidative stress. Perturbation of these regulatory networks impacts the redox status of critical regulatory protein thiols throughout the cell. Integrating these key concepts, our goal was to apply a cutting-edge approach toward understanding mechanisms of ethanol metabolism in disrupting hepatic thiol redox signaling. Utilizing a chronic murine model of ALD, we applied a cysteine targeted click chemistry enrichment coupled with quantitative nHPLC-MS/MS to assess the thiol redox proteome. Our strategy reveals that ethanol metabolism largely reduces the cysteine proteome, with 593 cysteine residues significantly reduced and 8 significantly oxidized cysteines. Ingenuity Pathway Analysis demonstrates that ethanol metabolism reduces specific cysteines throughout ethanol metabolism (Adh1, Cat, Aldh2), antioxidant pathways (Prx1, Mgst1, Gsr), as well as many other biochemical pathways. Further research is needed to determine how a reduced cysteine proteome impacts individual protein activity across these protein targets and pathways. Additionally, understanding how a complex array of cysteine-targeted post-translational modifications (e.g., S-NO, S-GSH, S-OH) are integrated to regulate redox signaling and control throughout the cell is key to the development of redox-centric therapeutic agents targeted to ameliorate the progression of ALD.

INSTRUMENT(S): 6550A iFunnel Q-TOF LC/MS

ORGANISM(S): Mus Musculus (mouse)

TISSUE(S): Liver

SUBMITTER: Cole Michel  

LAB HEAD: Kristofer Fritz

PROVIDER: PXD042070 | Pride | 2024-09-19

REPOSITORIES: Pride

Dataset's files

Source:

Similar Datasets

2019-01-23 | PXD012089 | Pride
2022-10-04 | PXD036447 | Pride
2020-12-03 | PXD006631 | Pride
2020-04-22 | PXD014236 | Pride
2024-05-09 | PXD048143 | Pride
2014-10-01 | E-GEOD-48366 | biostudies-arrayexpress
2014-09-26 | PXD001266 | Pride
2021-09-08 | PXD015070 | Pride
2016-05-30 | E-GEOD-70842 | biostudies-arrayexpress
2022-05-19 | PXD015459 | Pride