Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function. The transcriptional response of intestinal mucosal tissue (jejunum and ileum) served as parameters for the local response. Growing pigs (BW 35 kg/approx. 10 weeks) were fed with experimental diets containing a single, common or new protein sources viz. soybean meal (SBM), black soldier fly larvae (BSF), spray dried blood plasma (SDPP), rapeseed meal (RSM), and wheat gluten meal (WGM) over a period of 4 weeks.
Project description:Farmed Atlantic salmon was given either a 6 % cellulose diet, a diet containing 6 % shrimp shell chitin or a diet containing 6 % chitin from black soldier fly larvae for a period of 4 weeks. The fish were split into six tanks at the beginning of the experiment; six fish per tank and two tanks per diet. RNA from stomach and pyloric caeca from four fish given each diet was sequenced.
Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
Project description:The present study was conducted to investigate the effect of graded levels of black soldier fly larvae (BSFL) (Hermetia illucens) meal and BSFL paste in extruded diets for Atlantic salmon (Salmo salar). A total of 1260 Atlantic salmon with 34 g of mean initial weight were randomly distributed into 21 fiberglass tanks and fed (n=3) with seven extruded isolipidic and isonitrogenous diets for seven weeks. The experimental diets consisted of a positive control diet based on fishmeal, soy protein concentrate, corn gluten, faba bean and fish oil (Control_1); three diets with increased levels of full lipid BSFL meal, substituting 6.25% (6.25_IM), 12.5% (12.5_IM) and 25% (25_IM) of the protein content of Control_1; two diets with increased levels of full lipid BSFL paste, substituting 3.7% (3.7_IP) and 6.7% (6.7_IP); and of protein from Control_1 and a negative a control with 0.84 % of formic acid (Control_2). We investigate the effect of diets on growth performance, mmune response and health.
Project description:In the present study, we assessed if different legacy and novel molecular analyses approaches can detect and trace prohibited bovine material in insects reared to produce processed animal protein (PAP). Newly hatched black soldier fly (BSF) larvae were fed one of the four diets for seven days; a control feeding medium (Ctl), control feed spiked with bovine hemoglobin powder (BvHb) at 1% (wet weight, w/w) (BvHb 1%, w/w), 5% (BvHb 5%, w/w) and 10% (BvHb 10%, w/w). Another dietary group of BSF larvae, namely *BvHb 10%, was first grown on BvHb 10% (w/w), and after seven days separated from the residual material and placed in another container with control diet for seven additional days. Presence of ruminant material in insect feed and in BSF larvae was assessed in five different laboratories using (i) real time-PCR analysis, (ii) multi-target ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), (iii) protein-centric immunoaffinity-LC-MS/MS, (iv) peptide-centric immunoaffinity-LC-MS/MS, (v) tandem mass spectral library matching (SLM), and (vi) compound specific amino acid analysis (CSIA). All methods investigated detected ruminant DNA or BvHb in specific insect feed media and in BSF larvae, respectively. However, each method assessed, displayed distinct shortcomings, which precluded detection of prohibited material versus non-prohibited ruminant material in some instances. Taken together, these findings indicate that detection of prohibited material in the insect-PAP feed chain requires a tiered combined use of complementary molecular analysis approaches. We therefore advocate the use of a combined multi-tier molecular analysis suite for the detection, differentiation and tracing of prohibited material in insect-PAP based feed chains and endorse ongoing efforts to extend the currently available battery of PAP detection approaches with MS based techniques and possibly 13CAA fingerprinting.
Project description:The larvae of black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae), has demonstrated ability in the efficient bioconversion of organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both BSF larvae body and gut. No specific protocol was superior in capturing the BSF body and gut proteome, but each yielded complementary information to improve BSF proteome coverage. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. Metaproteome analysis on BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that comparing a range of extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.
2023-03-11 | PXD037977 | Pride
Project description:Intestinal microbial metagenome of black soldier fly larvae