Project description:In the current study, we characterized an miRNA, OsmiR397, which was found to be associated with increased grain size, more rice panicle branching and higher grain productivity. We also elucidated the molecular mechanisms by which OsmiR397 increased grain yield. This miRNA downregulated the expression of its target gene, OsLAC, which then affected the sensitivity of plants to brassinosteroids. These results should be useful for breeding high-yield crops through genetic engineering. We performed RNA-seq on the young panicles of the wild-type, OXmiR397b and OXLAC plants and found that lots of brassinosteroid-related genes were differentially expressed between the three samples
Project description:We characterized a rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which CYP96B4 gene (Cytochrome P450 96B subfamily) was identified as the target gene by map-based cloning and complementation test. A point mutation in CYP96B4 leads to a substitution of Thr to Lys in the SRS2 region. The sd37 leaves, panicles and seeds are all smaller compared with those of wild-type, and histological analysis showed that the decreased cell number was the main reason for the dwarf phenotype. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up- and down- regulated genes during this process.
Project description:Artificial miRNA mediated knock-down ago18 transgenic lines [ago18(1), ago18(2)] showed developmentally compromised phenotype in both vegetative and reproductive tissues compared to wild-type control. We have performed small RNA seq to investigate underlying molecular mechanism and to reveal functional role of AGO18 in rice.
Project description:Artificial miRNA mediated knock-down ago18 transgenic lines [ago18(1), ago18(2)] showed developmentally compromised phenotype in both vegetative and reproductive tissues compared to wild-type control. We have performed RNA seq to investigate underlying molecular mechanism and to reveal functional role of AGO18 in rice.
Project description:We characterized a rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which CYP96B4 gene (Cytochrome P450 96B subfamily) was identified as the target gene by map-based cloning and complementation test. A point mutation in CYP96B4 leads to a substitution of Thr to Lys in the SRS2 region. The sd37 leaves, panicles and seeds are all smaller compared with those of wild-type, and histological analysis showed that the decreased cell number was the main reason for the dwarf phenotype. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up- and down- regulated genes during this process. Two-week old seedlings of sd37 and wild-type rice plants were selected and three biological replicates were generated and evaluated.
Project description:Small RNA and PARE sequencing in rice (photoperiod sensitive male sterility lines and wild type) panicles under long-day and short-day conditions
Project description:To reveal the underlying molecular mechanism of jasmonate inhibits gibberellins signaling in rice, we performed transcriptional profiling of wild type nipponbare and mutant coi1-13 plants on a global scale using the Affymetrix GeneChip Rice Genome Array
Project description:Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to observe the response of two wild rice species (Oryza barthii and O. glaberrima) and two O. sativa genotypes (cv. Nipponbare and f. spontanea) to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, chlorophyll concentration and fluorescence showed that the wild species present higher level of leaf damage, increased accumulation of H2O2 and lower photosynthetic capacity when compared to O. sativa genotypes under infested conditions. Infestation decreased tiller number, except in Nipponbare. Infestation also caused the death of wild plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa genotypes, the number of panicles per plant was affected only in f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) genotypes under control and infested conditions. O. barthii has a less abundant antioxidant arsenal and is unable to modulate proteins involved with general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes and energy production, suggesting that, under infested condition, the primary metabolism is maintained more active compared to O. barthii. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors. These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming increased tolerance to mite infestation.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.