Project description:We sought to characterize the persistnet changes in brain miRNAs across multiple mouse models of fetal alcohol exposure We used miRNA expression arrays to characterize and observe the deregulation of brain specific ncRNAs Whole brain tissue was harvested from day 70 fetal alcohol exposed males and matched controls for RNA extraction and hybridization to affymetrix miRNA 2.0 arrays. We obtained tissue from four models: Trimiester 1,2, and 3, injections and contious preference drinking.
Project description:In this report we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. ~20% of the altered ncRNAs mapped to three imprinted regions: Snrpn-Ube3a, Dlk1-Dio3, and Sfmbt2, which showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this report help to expand on the mechanisms behind the long lasting changes in the brain transcriptome of FASD individuals. Comparison of fetal alcohol exposed and matched control adult C57/BL6J mice brains with olfactory bulbs removed
Project description:This experiment is an application of MeDIP-seq on hippocampus in a mouse model of fetal alcohol spectrum disorder (FASD). Here, we investigate genome-wide changes in DNA methylation in six C57BL/6 mice (3 ethanol-exposed and 3 saline-exposed). Mice were injected with either ethanol or saline on postnatal days 4 and 7, with hippocampal DNA methylation assessed on postnatal day 21. Across the six mice, there are 151,911 MeDIP peaks mapped to “intergenic”, “gene body”, or “promoter” based on the DNAm peaks proximity to a gene. Of these locations, 18,992 regions (16,374 intergenic, 1,887 gene body, 661 promoter) were common in all six mice (113,532 total) and can be combined for further analysis.
Project description:Moderate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used a microarray experiment and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure. To generate samples, female C57BL/6J mice were given ethanol injections (2.5g/kg of ethanol in saline) twice on gestational days 8 and 11 to produce acute ethanol exposure effects. Control females were injected with the same volume of saline. Females were mated. Whole brain RNA from adult (postnatal day 70) male ethanol-exposed offspring was extracted. RNA samples from three mice were pooled to reduce litter effects and the pooled samples were hybridized on Affymetrix arrays (2 control and 2 ethanol chips, total n=12 mice).
Project description:Moderate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used two independent microarray experiments and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure via moderate maternal drinking. To generate samples, two independent groups of female C57BL/6J mice were given access to 10% ethanol in water or water only. Control females had access to water only. Females were mated and continued to drink from gestational day 0 to pup postnatal day 10. Whole brain RNA from adult (postnatal day 70) male ethanol-exposed offspring was extracted. For experiment 1, RNA samples from three mice were pooled to reduce litter effects and the pooled samples were hybridized on Affymetrix arrays (2 control and 2 ethanol chips, total n=12 mice). For experiment 2, RNA from two mice were pooled per chip and three arrays per treatment were used (3 control, 3 ethanol, total n=12 mice).
Project description:We conducted proteome analysis of basilar (cerebral) arteries from three control baboon fetuses and four fetuses that were exposed to alcohol in utero. Three alcohol-exposure episodes took place during second trimester-equivalent of human pregnancy, while fetal arteries were harvested during cesarean sections performed near-term. Supernatants from whole artery lysates were processed for TMT-labeling, fractionated, and subjected to LC/MS analysis.
Project description:To assess gene expression underlying alcohol memory in different regions of the brain, we performed total RNA-sequencing (RNA-seq) on brain tissue (prefrontal cortex or dorsal hippocampus) from C57BL/6 adult mice that had undergone alcohol placement conditioning and either placed back into alcohol context (retrieval, Ret) or briefly handled as a control (no retrieval, NoRet)
Project description:Purpose: Traditional whole-tissue sequencing approaches do not fully capture brain cell-type specific effects of chronic alcohol. Therefore, the purpose of this study was to identify the specific transcriptome alterations in astrocytes due to chronic alcohol. Methods: We performed RNA-sequencing on astrocytes isolated from the prefrontal cortex (PFC) of C57BL/6J mice following chronic every-other-day alcohol consumption. Results: Differential expression analysis revealed alcohol-induced gene expression changes unique to astrocytes that could not be identified using whole tissue homogenate analysis. Enrichment analysis revealed involvement of calcium-related signaling and regulation of extracellular matrix genes in the astrocyte response to alcohol abuse. Conclusion: Our study presents the first focused analysis on the astrocyte transcriptome following chronic alcohol consumption, provides a framework for studying the functional response of astrocytes to alcohol and the possible astrocyte-specific effects of alcohol. In addition, our data represents a novel resource for groups interested in biological functions of astrocytes in the adult mouse PFC.
Project description:The developing brain is particularly sensitive to ethanol during the brain growth spurt or synaptogenesis (third human trimester equivalent). This has been shown to lead to abnormal brain development and behavioural changes in the adult mouse that are relevant to those seen in humans with fetal alcohol spectrum disorders (FASD). We evaluated the long-term (postnatal day 60 young adult) gene expression changes that occur in the brain due to ethanol exposure during synaptogenesis. We used microarray analyses to evaluate the changes in brain gene expression at postnatal day 60 that occur due to ethanol treatment at postnatal days 4 and 7 (synaptogenesis). To generate samples, C57BL/6J pups were injected with ethanol (experimental) or saline (control) at postnatal days 4 and 7. Pups were weaned at postnatal day 25 and sacrificed at postnatal day 60. Total RNA was extracted from whole brain tissue and RNA from three male mice from three different litters were pooled as one biological replicate. Each male ethanol-treated mouse represented in a sample was matched by a control littermate present in a control sample. This study consists of two biological replicates for each experimental group (total mice used was n=12).