Project description:Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However the entire biological role for Rnh1 is unknown. We generated Rnh1 knock out mice by homologous recombination. Here we studied differential gene expression from wild type (Rnh1 +/+), Heterozygous (Rnh1+/-) and Knock out (Rnh1-/-) yolk sacs isolated from embryonic day 9.5 (E9.5). We used microarrays to study global gene expression regulated by Rnh1 in yolk sacs. Total RNA was isolated from E9.5 yolk sacs of Rnh1 Wild type, heterozygous and knock out.
Project description:Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However the entire biological role for Rnh1 is unknown. We generated Rnh1 knock out mice by homologous recombination. Here we studied differential gene expression from wild type (Rnh1 +/+), Heterozygous (Rnh1+/-) and Knock out (Rnh1-/-) yolk sacs isolated from embryonic day 9.5 (E9.5). We used microarrays to study global gene expression regulated by Rnh1 in yolk sacs.
Project description:Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) containing protein. It binds to pancreatic-type ribonucleases and inhibit their function. However, the entire biological role of Rnh1 is unknown. We generated RNH1 knock out K562 cells by CRISPR/Cas9 method. We isolated polysomal RNA from control and RNH1-deficient K562 cells to quantify actively translated mRNAs by RNA-seq.
Project description:Summary: Ribonuclease Inhibitor (RI also known as Rnh1) is a 50 kDa, ubiquitously expressed leucine-rich repeat (LRR) protein. It is localized in cytosol and binds to pancreatic-type ribonucleases and inhibit their function. However, the entire biological role for Rnh1 is unknown. We generated RNH1 knock out K562 cells by CRISPR/Cas9 method. Here we studied differential gene expression from wild type and RNH1 knock out K562 cells by RNA-Seq analysis. Overall design: Total RNA was isolated from wild type and RNH1 deficient K562 cells.
Project description:PGCs undergo two distinct stages of demethylation before reaching a hypomethylated ground state at E13.5. Stage 1 occurs between E7.25- E9.5 in which PGCs experience a global loss of cytosine methylation. However, discreet loci escape this global loss of methylation and between E10.5-E13.5, stage 2 of demethylation takes place. In this stage these loci are targeted by Tet1 and Tet2 leading to the loss of the remaining methylation and resulting in the epigenetic ground state. Our data shows that Dnmt1 is responsible for maintaining the methylation of loci that escape stage 1 demethylation, and that it functions in a UHRF1 independent manner. Our data further demonstrates that when these loci lose methylation prior to stage 2 it results in early activation of the meiotic program, which leads to precocious differentiation of the germ line resulting in a decreased pool of PGCs in the embryo and subsequent infertility in adult mice.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.