Project description:The label-free quantitative proteome was generated for 42 primary AML patient samples enriched for CD34+ cells (or mononuclear cells in the case of NPMcyt sameples) and as controls 6 mobilized peripheral blood CD34+ cells were included. Furthermore, 6 AML cell lines were included, and also primary mesenchymal stem cells grown under normaoxia or hypoxia were included.
Project description:RNASeq data for mPB or CB-derived CD34+ exposed to UM171 human mobilized peripheral blood or cord blood-derived CD34(+) cells were cultured for 16 hours with vehicle (DMSO), dose response of UM171 [11.9nM, 19nM, 30.5nM, 48.8nM, 78.1nM and 125nM], SR1 [500nM] and combination of( UM171 [48.8nM]+SR1 [500nM])
Project description:Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HPC mobilization include G-CSF and the CXCR4 inhibitor AMD3100. The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects. Keywords: cell type comparison design microRNA (miRNA) profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects.
Project description:Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HPC mobilization include G-CSF and the CXCR4 inhibitor AMD3100. The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects. Keywords: cell type comparison design gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects.
Project description:In order to identify genes associated with the engraftment potential of human hematopoietic stem cells, we have employed whole genome microarray expression profiling of G0 and G1 phase CD34+ cells derived from bone marrow, mobilized peripheral blood, and umbilical cord blood. Samples were collected from healthy adult volunteers after obtaining informed consent according to the guidelines of the Investigational Review Board of Indiana University School of Medicine. CD34+ cells were selected and fractionated into G0 and G1 phases of cell cycle on a flow cytometer. Purity of sorted cells was further confirmed by qRT-PCR by measuring the relative expression of Ki67. Sorted cells were subjeccted to microarray analysis.
Project description:In order to identify genes associated with the engraftment potential of human hematopoietic stem cells, we have employed whole genome microarray expression profiling of G0 and G1 phase CD34+ cells derived from bone marrow, mobilized peripheral blood, and umbilical cord blood. Samples were collected from healthy adult volunteers after obtaining informed consent according to the guidelines of the Investigational Review Board of Indiana University School of Medicine. CD34+ cells were selected and fractionated into G0 and G1 phases of cell cycle on a flow cytometer. Purity of sorted cells was further confirmed by qRT-PCR by measuring the relative expression of Ki67. Sorted cells were subjeccted to microarray analysis. Three biological replicates of sorted and confirmed G0 and G1 cells from bone marrow, mobilized peripheral blood, and umbilical cord blood (total of eighteen samples) were subjected to microarray analysis. To generate distinct and unique sets of data, we did not pool multiple samples from any tissue studied so that each sample or its replicate was from a single donor.
Project description:Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HPC mobilization include G-CSF and the CXCR4 inhibitor AMD3100. The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects. This SuperSeries is composed of the following subset Series: GSE11247: Peripheral blood stem cell gene profiling GSE11248: Peripheral blood stem cell microRNA profiling Keywords: SuperSeries Refer to individual Series
Project description:Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HPC mobilization include G-CSF and the CXCR4 inhibitor AMD3100. The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects. This SuperSeries is composed of the SubSeries listed below.
Project description:Mobilized-peripheral blood hematopoietic stem cells (HSCs) have been used for transplantation, immunotherapy, and cardiovascular regenerative medicine. Agents used for HPC mobilization include G-CSF and the CXCR4 inhibitor AMD3100. The HSCs cells mobilized by each agent may contain different subtypes and have different functions. To characterize mobilized HSCs used for clinical applications, microRNA (miRNA) profiling and gene expression profiling were used to compare AMD3100-mobilized CD133+ cells from 4 subjects, AMD3100 plus G-CSF-mobilized CD133+ cells from 4 subjects and G-CSF-mobilized CD34+ cells from 5 subjects. The HSCs were compared to peripheral blood leukocytes (PBLs) from 7 subjects. Keywords: cell type comparison design