Project description:Bulk RNA-seq of B-ALL cells cocultured with bone marrow-mesenchymal stem cells (BM-MSC) identified that B-ALL acquire epithelial-mesenchymal transition (EMT) properties by interacting with primary bone marrow-mesenchymal stem cells (BM-MSC) and scRNA-seq dissected the hybrid cluster of adherent B-ALL (Adh B-ALL) harboring B-ALL and BM-MSC features induced by EMT program
Project description:Expression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow Keywords: fetal bone marrow, mesenchymal stromal cells, migration, gene expression, genomics Three biological replates for both migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow
Project description:Mesenchymal stromal cells (MSC) are ideal candidates for cell therapies, due to their immune-regulatory and regenerative properties. We have previously reported that lung-derived MSC are tissue-resident cells with lung-specific properties compared to bone marrow-derived MSC. Assessing relevant molecular differences between lung-MSC and bone marrow-MSC is important, given that such differences may impact their behavior and potential therapeutic use. Here, we present an in-depth mass spectrometry (MS) based strategy to investigate the proteomes of lung-MSC and bone marrow-MSC. The MS-strategy relies on label free quantitative data-independent acquisition (DIA) analysis and targeted data analysis using a MSC specific spectral library. We identified several significantly differentially expressed proteins between lung-MSC and bone marrow-MSC within the cell layer (352 proteins) and in the conditioned medium (49 proteins). Bioinformatics analysis revealed differences in regulation of cell proliferation, which was functionally confirmed by decreasing proliferation rate through Cytochrome P450 stimulation. Our study reveals important tissue-specific differences within proteome and matrisome profiles between lung- and bone marrow-derived MSC that may influence their behavior and affect the clinical outcome when used for cell-therapy.
Project description:We hypothesized that miRNAs in the bone maroow mesenchymal stem cells (BM-MSC)-derived exosomes contributed to the phenotype change of breast cancer cells through exosome transfer. We analyzed the miRNA expression signature in BM-MSC-derived exosomes. We compared the miRNA expression levels in exosomes between BM-MSCs and adult fibroblasts (as a control). In this study, miRNA expression including in bone-marrow mesenchymal cell (BM-MSC)-derived exosomes was examined, and compared with that of exosomes derived from adult fibroblast cells or the BM-MSC cells. In addition, miRNA expression of BM-MSC exosomes was also compared with that of breast cancer cells with or without cancer stem cell marker.
Project description:Mesenchymal stromal cells (MSCs) are multipotent progenitors supporting bone marrow hematopoiesis. MSC have an efficient DNA damage response (DDR) and are consequently reatively radio-resistant cells. Therefore, MSCs are key to hematopoietic reconstitution following total body irradiation (TBI) and bone marrow transplantation (BMT). The bone marrow niche is hypoxic and via the heterodimeric transcription factor Hypoxia-inducible factor-1 (Hif-1), hypoxia enhances the DDR. Using gene knock-down, we have previously shown that the Hif-1α subunit of Hif is involved in MSC radio-resistance, however its exact mechanism of action remains unknown. In order to dissect the involvement of Hif-1α in the DDR, we have generated using CRISPR/Cas9 technology, a stable MS5 mouse MSC cell line lacking Hif-1 expression. Herein, we show that it is the whole Hif-1 transcription factor, and not only the Hif-1α subunit, that modulates the DDR of mouse MSCs, and that this effect is dependent upon the integrity of the DNA binding domain. We have also characterized the Hif-1α-dependent proteomic changes undergone by hypoxic MS5 cells. These findings have important implications for the modulation of MSC radio-resistance in the context of BMT and cancer.
Project description:Transcription profiling analysis was performed on purified CD34+ cell lines (Cord Blood CD34+) treated with ExtracellularVescicles (EVs) isolated from bone marrow mesenchymal stem cells (BM-MSC).
Project description:In this series we have analyzed the effect of donor age on the gene expression profile of mesenchymal stromal cells (alternatively named mesenchymal stem cells; MSC) from human bone marrow. Cells were taken from bone marrow aspirates from iliac crest (BM) of healthy donors or from the caput femoris (HIP) of elderly patients that received femoral head prosthesis.
Project description:In the present study we analyzed the effect of cellular senescence on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC were isolated from femoral heads of non-osteoporotic donors after total hip arthroplasty. Cells were isolated from human bone marrow according to the previously described protocol (Noth et al., 2002, J Orthop Res, 20/5, 1060-1069) under agreement of the local Ethics Committee of the University of Würzburg. Bone marrow was obtained of femoral heads after total hip arthroplasty due to osteoarthritis and/or hip dysplasia. MSC were replated after reaching 70-90% confluence until they entered state of cellular senescence. RNA samples of control cells were taken from passage 1 or passage 2.
Project description:Gene expression profiles of limbal explant culture-derived epithelial (LEC) and mesenchymal-like cells (MLC-L) and bone marrow-derived mesenchymal stem cells (MSC-BM). To confirm the stem cell signatures of cultured LEC and to establish the source, possible role of the stroma-derived MLC-L .